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Learning Objectives
Differential Equations & Proofs

CT

M&C CPS

discrete vs. continuous analogy
rigorous reasoning about ODEs

beyond differential invariant terms
differential invariant formulas

cut principles for differential equations
axiomatization of ODEs

differential facet of logical trinity

understanding continuous dynamics
relate discrete+continuous

operational CPS effects
state changes along ODE
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Differential Facet of Logical Trinity

Axiomatics

Syntax Semantics
Syntax defines the notation

What problems are we allowed to write down?

Semantics what carries meaning.
What real or mathematical objects does the syntax stand for?

Axiomatics internalizes semantic relations into universal syntactic
transformations.
How does the semantics of e ≥ ẽ relate to semantics of
e− ẽ ≥ 0, syntactically? What about derivatives?
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Differentials

Syntax e ::= x | x ′ | c | e + k | e · k | (e)′

Semantics ω[[(e)′]] = ∑
x

ω(x ′)
∂ [[e]]

∂x
(ω)

Axioms

(e + k)′ = (e)′+ (k)′

(e · k)′ = (e)′ ·k + e · (k)′

(c())′ = 0 for constants/numbers c()

(x)′ = x ′ for variables x ∈ V

ODE

[[x ′ = f (x)&Q]] = {(ϕ(0)|{x ′}{ ,ϕ(r)) : ϕ |= x ′ = f (x)∧Q

for some ϕ : [0, r ]→S, some r ∈ R}

ϕ(z)(x ′) =
dϕ(t)(x)

dt
(z) . . .
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Differential Substitution Lemmas ; Proofs

Lemma (Differential lemma) (Differential value vs. Time-derivative)
If ϕ |= x ′ = f (x)∧Q for duration r>0, then for all 0≤z≤r , FV(e)⊆ {x}:

ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

Lemma (Differential assignment) (Effect on Differentials)
If ϕ |= x ′ = f (x)∧Q then ϕ |= P↔ [x ′ := f (x)]P

Lemma (Derivations) (Equations of Differentials)

(e + k)′ = (e)′+ (k)′

(e · k)′ = (e)′ · k + e · (k)′

(c())′ = 0 for constants/numbers c()

(x)′ = x ′ for variables x ∈ V
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Differential Weakening

Differential Weakening

dW

Q ` P

Γ ` [x ′ = f (x)&Q]P,∆

DW [x ′ = f (x)&Q]P↔ [x ′ = f (x)&Q](Q→ P)

t

x

Q

ν

ω

0 r
x ′ = f (x)&Q

¬Q

ODE

[[x ′ = f (x)&Q]] = {(ϕ(0)|{x ′}{ ,ϕ(r)) : ϕ |= x ′ = f (x)∧Q

for some ϕ : [0, r ]→S, some r ∈ R}

ϕ(z)(x ′) =
dϕ(t)(x)

dt
(z)

Differential equations cannot leave their domains.
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Differential Weakening

dW

Q ` P

Γ ` [x ′ = f (x)&Q]P,∆

DW [x ′ = f (x)&Q]P↔ [x ′ = f (x)&Q](Q→ P)
t

x

Q

ν

ω

0 r
x ′ = f (x)&Q

¬Q

Example (Bouncing ball)

∗

R ` x ≥ 0→ 0≤ x

G ` [x ′ = v ,v ′ =−g &x ≥ 0](x ≥ 0→ 0≤ x)

DW ` [x ′ = v ,v ′ =−g &x ≥ 0]0≤ x

No need to solve any ODEs to prove that bouncing ball is above ground.
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Differential Invariant Terms for Differential Equations

Differential Invariant

dI

Q

` [x ′ := f (x)](e)′ = 0

e = 0 ` [x ′ = f (x)&Q]e = 0

DI
(
[x ′ = f (x)]e = 0↔ e = 0

)
← [x ′ = f (x)] (e)′ = 0

DE [x ′ = f (x)&Q]P↔ [x ′ = f (x)&Q][x ′ := f (x)]P

DW [x ′ = f (x)&Q]P↔ [x ′ = f (x)&Q](Q→ P)

Proof (dI is a derived rule).

Q ` [x ′ := f (x)](e)′ = 0

G,→R ` [x ′ = f (x)&Q](Q→ [x ′ := f (x)](e)′ = 0)

DW ` [x ′ = f (x)&Q][x ′ := f (x)](e)′ = 0

DE ` [x ′ = f (x)&Q](e)′ = 0

DI e = 0 ` [x ′ = f (x)&Q]e = 0

G
P

[α]P
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Differential Invariant Equations

Lemma (Differential lemma) (Differential value vs. Time-derivative)

ϕ |= x ′ = f (x)∧Q for r > 0 ⇒ ∀0≤z≤r ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

Differential Invariant

dI

` [x ′ := f (x)](e)′ = (k)′

e = k ` [x ′ = f (x)]e = k

DI
(
[x ′ = f (x)]e = k ↔ e = k

)
← [x ′ = f (x)] (e)′ = (k)′

Proof (= rate of change from = initial value. Mean-value theorem).

dϕ(t)[[e]]

dt
(z) = ϕ(z)[[(e)′]] = ϕ(z)[[(k)′]] =

dϕ(t)[[k ]]

dt
(z)
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Example: Differential Invariant Inequalities

: Oscillator

∗

ω≥0∧d≥0 ` 2ω2xy + 2y(−ω2x−2dωy)≤ 0

ω≥0∧d≥0 ` [x ′:=y ][y ′:=−ω2x−2dωy ]2ω2xx ′+ 2yy ′ ≤ 0

ω2x2+y2≤c2 ` [x ′ = y ,y ′ =−ω2x−2dωy &ω≥0∧d≥0]ω2x2+y2≤c2
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Differential Invariant Conjunctions

Differential Invariant

dI

` [x ′ := f (x)]((A)′∧ (B)′)

A∧B ` [x ′ = f (x)](A∧B)

DI
(
[x ′ = f (x)](A∧B)↔ (A∧B)

)
← [x ′ = f (x))]((A)′∧ (B)′)

Proof (separately).

` [x ′ = f (x)](A)′
DIA ` [x ′ = f (x)]A

` [x ′ = f (x)](B)′
DIB ` [x ′ = f (x)]B

[]∧,WL A∧B ` [x ′ = f (x)](A∧B)
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` [x ′ = f (x)](B)′
DIB ` [x ′ = f (x)]B

[]∧,WL A∧B ` [x ′ = f (x)](A∧B)

[]∧ [α](P ∧Q)↔ [α]P ∧ [α]Q
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Quantum’s Back for a Differential Invariant Proof

[]∧

dI

[:=]

R
∗

x≥0 ` 2gv =−2v(−g)

x≥0 ` [x ′:=v ][v ′:=−g]2gx ′ =−2vv ′

2gx=2gH−v2 ` [x ′′=−g &x≥0]2gx=2gH−v2

dW

id
∗

x≥0 ` x≥0

` [x ′′=−g &x≥0]x≥0

2gx=2gH−v2 ` [x ′′ =−g &x≥0](2gx=2gH−v2∧ x≥0)

No solutions but still a proof.
Simple proof with simple arithmetic.
Independent proofs for independent questions.
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Differential Invariant Conjunctions

Differential Invariant

dI
` [x ′ := f (x)]((A)′∧ (B)′)

A∧B ` [x ′ = f (x)](A∧B)

x

v
dist(x, v) ∧ slow(v)

DI
(
[x ′ = f (x)](A∧B)↔ (A∧B)

)
← [x ′ = f (x))]((A)′∧ (B)′)

Proof (separately).

` [x ′ = f (x)](A)′
DIA ` [x ′ = f (x)]A

` [x ′ = f (x)](B)′
DIB ` [x ′ = f (x)]B

[]∧,WL A∧B ` [x ′ = f (x)](A∧B)
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Assuming Invariants

¬ ¬FF F ¬ ¬FF F

Q→ [x ′ := f (x)](F)′

F ` [x ′ = f (x)&Q]F

F ∧Q→ [x ′ := f (x)](F)′

F ` [x ′ = f (x)&Q]F

Example (Restrictions)

v2−2v + 1 = 0 ` 2vw−2w = 0

v2−2v + 1 = 0 ` [v ′:=w ][w ′:=− v ]2vv ′−2v ′ = 0

v2−2v + 1 = 0 ` [v ′ = w ,w ′ =−v ]v2−2v + 1 = 0

0 w

v

loop
F ` [α]F

F ` [α∗]F
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Outline

1 Learning Objectives

2 Differential Invariants
Recap: Ingredients for Differential Equation Proofs
Soundness: Derivations Lemma
Differential Weakening
Equational Differential Invariants
Differential Invariant Inequalities
Disequational Differential Invariants
Example Proof: Damped Oscillator
Conjunctive Differential Invariants
Disjunctive Differential Invariants
Assuming Invariants

3 Differential Cuts

4 Soundness

5 Summary
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Differential Cuts

Differential Cut

F ` [x ′ = f (x)]C F ` [x ′ = f (x)&C]F

F ` [x ′ = f (x)]F

Differential Cut

Proof (Soundness).

Let ϕ |= x ′ = f (x)∧Q starting in ω ∈ [[F ]].
ω ∈ [[[x ′ = f (x)&Q]C]] by left premise.
Thus, ϕ |= x ′ = f (x)∧Q∧C.
Thus, ϕ(r) ∈ [[F ]] by second premise.
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Differential Cut Example: Increasingly Damped Oscillator

∗

R
ω≥0∧d≥0 ` 2ω2xy + 2y(−ω2x−2dωy)≤ 0

[:=]
ω≥0∧d≥0 ` [x ′:=y ][y ′:=−ω2x−2dωy ]2ω2xx ′+ 2yy ′ ≤ 0

dI
ω2x2+y2≤c2 ` [x ′=y ,y ′=−ω2x−2dωy ,d ′=7&ω≥0∧d≥0]ω2x2+y2≤c2

dC
ω2x2+y2≤c2 ` [x ′=y ,y ′=−ω2x−2dωy ,d ′=7&ω≥0]ω2x2+y2≤c2

∗

R
ω≥0 ` 7≥0

[:=]
ω≥0 ` [d ′:=7]d ′≥0

dI d≥0 ` [x ′ = y ,y ′ =−ω2x−2dωy ,d ′=7&ω≥0]d≥0
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∗

R
ω≥0 ` 7≥0

[:=]
ω≥0 ` [d ′:=7]d ′≥0

dI d≥0 ` [x ′ = y ,y ′ =−ω2x−2dωy ,d ′=7&ω≥0]d≥0

increasingly damped oscillator
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Could repeatedly diffcut in formulas to help the proof
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Ex: Differential Cuts

∗

R y5 ≥ 0 ` 3x2((x−2)4 + y5)≥ 0

[:=] y5 ≥ 0 ` [x ′:=(x−2)4 + y5][y ′:=y2]3x2x ′ ≥ 0

dI x3 ≥−1 ` [x ′ = (x−2)4 + y5,y ′ = y2 &y5 ≥ 0]x3 ≥−1 .

dC x3 ≥−1∧ y5 ≥ 0 ` [x ′ = (x−2)4 + y5,y ′ = y2]x3 ≥−1

∗

R ` 5y4y2 ≥ 0

[:=] ` [x ′:=(x−2)4 + y5][y ′:=y2]5y4y ′ ≥ 0

dI y5 ≥ 0 ` [x ′ = (x−2)4 + y5,y ′ = y2]y5 ≥ 0
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Soundness Proof: Differential Invariants

Lemma (Differential lemma) (Differential value vs. Time-derivative)

ϕ |= x ′ = f (x)∧Q for r > 0 ⇒ ∀0≤z≤r ϕ(z)[[(e)′]] =
dϕ(t)[[e]]

dt
(z)

Differential Invariant

DI

(
[x ′ = f (x)]e ≥ 0↔ e ≥ 0

)
← [x ′ = f (x)](e)′ ≥ 0

0 t

k
e

Proof (≥ rate of change from ≥ initial value. Case r = 0 is easier.)

h(t)
def
= ϕ(t)[[e]] is differentiable on [0, r ] if r > 0 by diff. lemma.

dh(t)
dt

(z) =
dϕ(t)[[e]]

dt
(z) = ϕ(z)[[(e)′]]≥ 0 by lemma + assume for all z.

h(r)−h(0)︸︷︷︸
≥0

= (r −0)︸ ︷︷ ︸
>0

dh(t)
dt

(ξ )︸ ︷︷ ︸
≥0

≥ 0 by mean-value theorem for some ξ .
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Summary: Differential Invariants for Differential Equations

Differential Weakening

Q ` F

Γ ` [x ′ = f (x)&Q]F
t

x

Q

w

u

0 r
x′ = f(x) &Q

¬Q

Differential Invariant

Q ` [x ′ := f (x)](F)′

F ` [x ′ = f (x)&Q]F

Differential Cut

F ` [x ′ = f (x)&Q]C F ` [x ′ = f (x)&Q∧C]F

F ` [x ′ = f (x)&Q]F

DW [x ′ = f (x)&Q]F ↔ [x ′ = f (x)&Q](Q→ F)

DI
(
[x ′ = f (x)&Q]F ↔ [?Q]F

)
← (Q→ [x ′ = f (x)&Q](F)′)

DC
(
[x ′ = f (x)&Q]F ↔ [x ′ = f (x)&Q∧C]F

)
← [x ′ = f (x)&Q]C
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