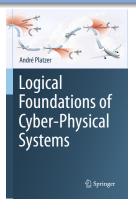
12: Ghosts & Differential Ghosts Logical Foundations of Cyber-Physical Systems



Stefan Mitsch

Learning Objectives

- 2 Recap: Proofs for Differential Equations
- 3 A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Differential Ghosts of Time
 - Constructing Differential Ghosts

Differential Ghosts

- Substitute Ghosts
- Limit Velocity of an Aerodynamic Ball

Summary

Outline

Learning Objectives

2 Recap: Proofs for Differential Equations

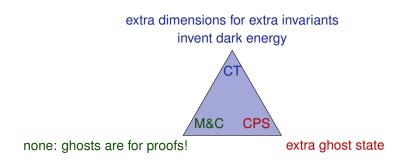
3 A Gradual Introduction to Ghost Variables

- Discrete Ghosts
- Differential Ghosts of Time
- Constructing Differential Ghosts

Differential Ghosts

- Substitute Ghosts
- Limit Velocity of an Aerodynamic Ball

Summary



mark ghosts in models

extra ghost state

Learning Objectives

Proofs for Differential Equations

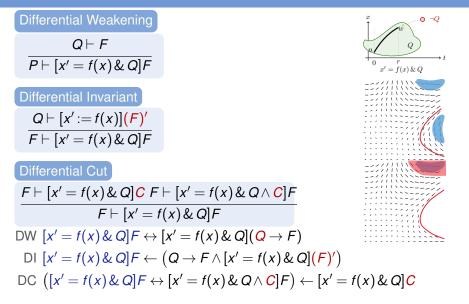
- 3 A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Differential Ghosts of Time
 - Constructing Differential Ghosts

Differential Ghosts

- Substitute Ghosts
- Limit Velocity of an Aerodynamic Ball

Summary

Differential Invariants for Differential Equations



Differential Invariants for Differential Equations

Differential Weakening $O \vdash F$ $P \vdash [x' = f(x) \& Q]F$ x' = f(x) & QDifferential Invariant $Q \vdash [x' := f(x)](F)'$ $F \vdash [x' = f(x) \& Q]F$ **Differential Cut** $F \vdash [x' = f(x) \& Q] C F \vdash [x' = f(x) \& Q \land C] F$ $F \vdash [x' = f(x) \& Q]F$ DW $[x' = f(x) \& Q] F \leftrightarrow [x' = f(x) \& Q] (Q \to F)$ $DI [x' = f(x) \& Q] F \leftarrow (Q \rightarrow F \land [x' = f(x) \& Q](F)')$ DC $([x' = f(x) \& Q]F \leftrightarrow [x' = f(x) \& Q \land C]F) \leftarrow [x' = f(x) \& Q]C$ DE $[x' = f(x) \& Q] F \leftrightarrow [x' = f(x) \& Q] [x' := f(x)] F$

Learning Objectives

2 Recap: Proofs for Differential Equations

3 A Gradual Introduction to Ghost Variables

- Discrete Ghosts
- Differential Ghosts of Time
- Constructing Differential Ghosts

Differential Ghosts

- Substitute Ghosts
- Limit Velocity of an Aerodynamic Ball

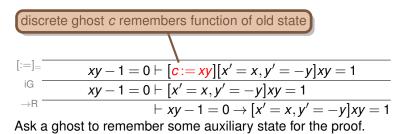
Summary

iG
$$\frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta}$$
 (y new)

iG
$$\frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta}$$
 (y new)

$$\stackrel{\text{iG}}{\rightarrow \text{R}} \frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{\vdash xy - 1 = 0 \rightarrow [x' = x, y' = -y]xy = 1}$$
Ask a ghost to remember some auxiliary state for the proof.

iG
$$\frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta}$$
 (y new)



$$\begin{array}{l} \text{iG} \ \frac{\Gamma \vdash [y := e]p, \Delta}{\Gamma \vdash p, \Delta} \ (y \text{ new}) \\ \text{is} \\ \text{ie} \\ \text$$

$$ho \leftrightarrow [y := e]
ho$$
 by $[:=]$

$$\frac{Xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]xy = 1}{xy - 1 = 0 \vdash [c := xy][x' = x, y' = -y]xy = 1}$$

$$\frac{xy - 1 = 0 \vdash [c' = xy][x' = x, y' = -y]xy = 1}{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}$$

$$\frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{y - 1 = 0 \to [x' = x, y' = -y]xy = 1}$$

$$\begin{array}{l} \text{iG} \ \frac{\Gamma \vdash [y := e] p, \Delta}{\Gamma \vdash p, \Delta} \ (y \text{ new}) \\ [:=]_{=} \ \frac{\Gamma, y = e \vdash p(y), \Delta}{\Gamma \vdash [x := e] p(x), \Delta} (y \text{ new}) \end{array}$$

$$ho \leftrightarrow [y := e]
ho$$
 by [:=]

$$\frac{dI}{MR} \frac{xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]c = xy}{xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]xy = 1}$$

$$\frac{iG}{iG} \frac{xy - 1 = 0 \vdash [c := xy][x' = x, y' = -y]xy = 1}{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}$$

$$\frac{iG}{iG} \frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{iG}$$

$$\frac{iG}{iG} \frac{xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1}{iG}$$

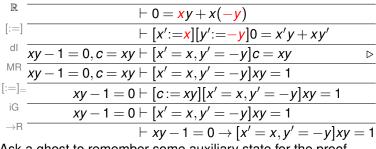
$$\begin{array}{l} \text{iG} \ \frac{\Gamma \vdash [y := e] p, \Delta}{\Gamma \vdash p, \Delta} \ (y \text{ new}) \\ [:=]_{=} \ \frac{\Gamma, y = e \vdash p(y), \Delta}{\Gamma \vdash [x := e] p(x), \Delta} (y \text{ new}) \end{array}$$

$$ho \leftrightarrow [y := e]
ho$$
 by [:=]

$$\begin{bmatrix} :=] & \vdash [x':=x][y':=-y]0 = x'y + xy' \\ \hline xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]c = xy & \triangleright \\ \hline xy - 1 = 0, c = xy \vdash [x' = x, y' = -y]xy = 1 \\ \hline \vdots \\ \vdots \\ \vdots \\ \vdots \\ \rightarrow R & \hline xy - 1 = 0 \vdash [c := xy][x' = x, y' = -y]xy = 1 \\ \hline \rightarrow R & \vdash xy - 1 = 0 \vdash [x' = x, y' = -y]xy = 1 \\ \hline \vdash xy - 1 = 0 \to [x' = x, y' = -y]xy = 1 \\ \hline \rightarrow R & \vdash xy - 1 = 0 \to [x' = x, y' = -y]xy = 1 \\ \hline Ask a sheet to remember some auxiliant state for the proof$$

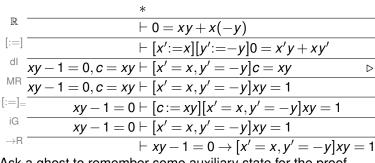
$$\begin{array}{l} \text{iG} \ \frac{\Gamma \vdash [y := e] p, \Delta}{\Gamma \vdash p, \Delta} \ (y \text{ new}) \\ [:=]_{=} \ \frac{\Gamma, y = e \vdash p(y), \Delta}{\Gamma \vdash [x := e] p(x), \Delta} (y \text{ new}) \end{array}$$

$$ho \leftrightarrow [y := e]
ho$$
 by $[:=]$



$$\begin{array}{l} \text{iG } \frac{\Gamma \vdash [y := e] p, \Delta}{\Gamma \vdash p, \Delta} \quad (y \text{ new}) \\ \text{[:=]}_{=} \frac{\Gamma, y = e \vdash p(y), \Delta}{\Gamma \vdash [x := e] p(x), \Delta} (y \text{ new}) \end{array}$$

$$ho \leftrightarrow [y := e]
ho$$
 by $[:=]$



Solve by Differential Cuts and Differential Invariants

$$\stackrel{\text{dC}}{\stackrel{\text{iG}}{=}} \frac{\overline{v = 0, a \ge 0, t = 0 \vdash [v_0 := v]}[x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Solve by Differential Cuts and Differential Invariants

$$\underset{iG}{\overset{\text{dC}}{\overset{\text{iG}}{ig}}} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Solve by Differential Cuts and Differential Invariants

$$\begin{array}{c} v_{0} = 0, a \geq 0 \vdash t \geq 0 \land v = v_{0} + at \rightarrow v \geq 0 \\ \\ \overset{\text{dC}}{\underset{\text{iG}}{\overset{\text{dC}}{\overset{\text{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}{\overset{iG}}$$

$$\begin{array}{l} \underbrace{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}_{\text{iG}} \\ \underbrace{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}_{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0} \\ \underbrace{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}_{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0} \end{array}$$

Why does the proof with ghost solutions need t' = 1 in the model?

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

$$\begin{array}{c} v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0 \\ \hline v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0 \\ \hline u = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0 \\ \hline v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0 \end{array}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

× Cannot add
$$t' = 1$$
 to $x' = v, t' = 2$

$$[:=], dW = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0$$

$$[:=], dW = 0, a \ge 0, t = 0 \vdash [v_0 := v] [x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at] v \ge 0$$

$$[dC = v_0, a \ge 0, t = 0 \vdash [v_0 := v] [x' = -vy, y' = vx, v' = a, t' = 1] v \ge 0$$

$$[dC = v_0, a \ge 0, t = 0 \vdash [v_0 := v] [x' = -vy, y' = vx, v' = a, t' = 1] v \ge 0$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

- × Cannot add t' = 1 to x' = v, t' = 2
- × Cannot add t' = 1 to x' = v, v' = t

$$[:=], dW = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0$$

$$[:=], dW = 0, a \ge 0, t = 0 \vdash [v_0 := v] [x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at] v \ge 0$$

$$[dC = v_0, a \ge 0, t = 0 \vdash [v_0 := v] [x' = -vy, y' = vx, v' = a, t' = 1] v \ge 0$$

$$[dC = v_0, a \ge 0, t = 0 \vdash [v_0 := v] [x' = -vy, y' = vx, v' = a, t' = 1] v \ge 0$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

- × Cannot add t' = 1 to x' = v, t' = 2
- × Cannot add t' = 1 to x' = v, v' = t

✓ Can add
$$t' = 1$$
 to $x' = v, v' = -g$

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

- × Cannot add t' = 1 to x' = v, t' = 2
- × Cannot add t' = 1 to x' = v, v' = t
- × Can add t' = 1 to x' = v, v' = -g unless e.g. postcondition *P* reads *t*

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta} \quad (t \text{ fresh})$$

What could possibly go wrong?

- × Cannot add t' = 1 to x' = v, t' = 2
- × Cannot add t' = 1 to x' = v, v' = t

× Can add t' = 1 to x' = v, v' = -g unless e.g. postcondition *P* reads *t*

But this proof rule is too specific (for *t* only)

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta} \quad (t \text{ fresh})$$

Differential Ghost $[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$

$$[:=], dW \frac{v_0 = 0, a \ge 0 \vdash t \ge 0 \land v = v_0 + at \rightarrow v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1 \& v = v_0 + at]v \ge 0}$$

$$\frac{dC}{iG} \frac{v = 0, a \ge 0, t = 0 \vdash [v_0 := v][x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}{v = 0, a \ge 0, t = 0 \vdash [x' = -vy, y' = vx, v' = a, t' = 1]v \ge 0}$$

Why does the proof with ghost solutions need t' = 1 in the model? Could we just add in t' = 1 if we need it?

$$\frac{\Gamma \vdash [x' = f(x), t' = 1 \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta} \quad (t \text{ fresh})$$

Get differential ghosts of time by axiom DG, even with initial t = 0:

$$\begin{array}{c} \Gamma, t = \mathbf{0} \vdash [x' = f(x), t' = 1 \& Q] P, \Delta \\ \exists \mathsf{R} & \Gamma \vdash \exists t [x' = f(x), t' = 1 \& Q] P, \Delta \\ \hline \mathsf{DG} & \Gamma \vdash [x' = f(x) \& Q] P, \Delta \end{array}$$

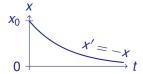
Differential Ghost $[x' = f(x) \& Q]P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q]P$

Example (Exponential decay)

$$dl \ \overline{x > 0 \vdash [x' = -x]x > 0}$$

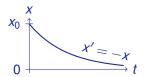
Example (Exponential decay)

$$\overset{[:=]}{\overset{dl}{x \to 0}} \vdash [x':=-x]x' > 0$$

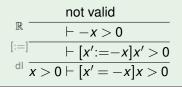


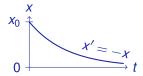
Example (Exponential decay)

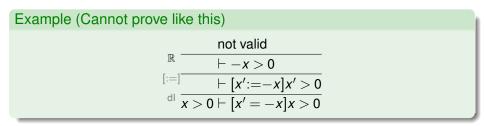
$$\begin{array}{c} \mathbb{R} & \vdash -x > 0 \\ \mathbb{R} & \vdash [x':=-x]x' > 0 \\ \\ \mathbb{R} & \downarrow \\ x > 0 \vdash [x'=-x]x > 0 \end{array}$$



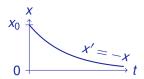
Example (Cannot prove like this)





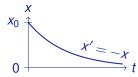


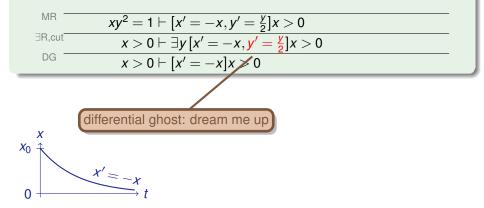
Matters get worse over time in this dynamics



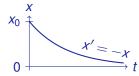
$$x > 0 \vdash [x' = -x]x > 0$$

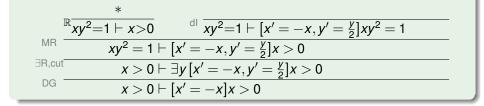
$$\frac{\exists R, cut}{DG} \frac{x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}] x > 0}{x > 0 \vdash [x' = -x] x > 0}$$

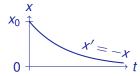


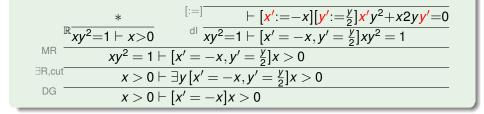


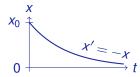
$$\begin{array}{c} \mathbb{R} \xrightarrow{\mathbb{R} xy^2 = 1 \vdash x > 0} & \stackrel{\text{dl}}{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]xy^2 = 1} \\ \mathbb{R}, \text{cut} & \frac{xy^2 = 1 \vdash [x' = -x, y' = \frac{y}{2}]x > 0}{\mathbb{R}, \text{cut}} \\ \mathbb{R}, \text{cut} & \frac{x > 0 \vdash \exists y [x' = -x, y' = \frac{y}{2}]x > 0}{x > 0 \vdash [x' = -x]x > 0} \\ \end{array}$$

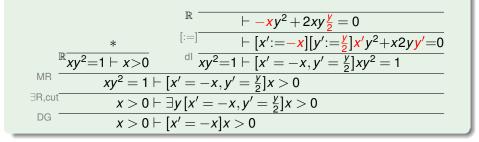


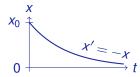


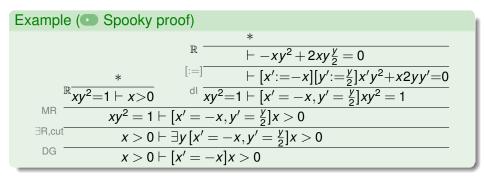


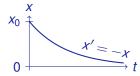


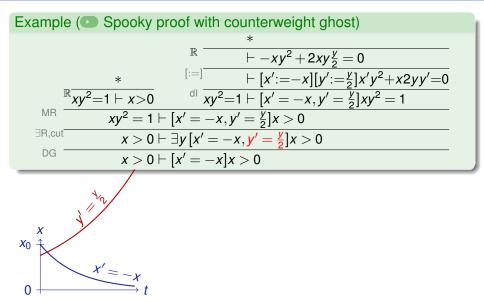


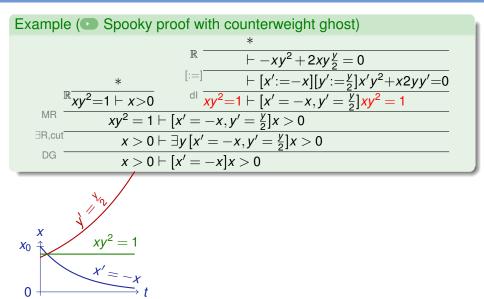










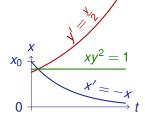


Example (Spooky proof with counterweight ghost) $\begin{array}{c} & \ast \\ & & & \\$

 $x_{0} \xrightarrow{x} xy^{2} = 1$ $0 \xrightarrow{x' = -x} t$

Creative proofs with differential ghosts prove what we otherwise couldn't!

Example (Spooky proof with counterweight ghost) $\begin{array}{c} & \ast \\ & & & \\$



Creative proofs with differential ghosts prove what we otherwise couldn't!

Wait, are differential ghosts actually sound?

Learning Objectives

2 Recap: Proofs for Differential Equations

- 3 A Gradual Introduction to Ghost Variables
 - Discrete Ghosts
 - Differential Ghosts of Time
 - Constructing Differential Ghosts

Differential Ghosts

- Substitute Ghosts
- Limit Velocity of an Aerodynamic Ball

Summary

What could possibly go wrong?

$$x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash \exists y [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash [x'=1] x \le 6$$

What could possibly go wrong?

$$x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash \exists y [x'=1, y'=y^2+1] x \le 6$$

$$x=0 \vdash [x'=1] x \le 6$$

 2π

What could possibly go wrong? Explosive ghosts stop the world!

$$x=0, y=0 \vdash [x'=1, y'=y^2+1] x \le 6 \\ \frac{1}{4} \frac{x=0 \vdash \exists y [x'=1, y'=y^2+1] x \le 6}{x=0 \vdash [x'=1] x \le 6}$$

í.

11

11

Constructing Differential Ghosts

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q] P$$

Constructing Differential Ghosts

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q] P$$

Constructing Differential Ghosts

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = g(x, y) \& Q] P$$

if new y' = g(x, y) has a global solution $y : [0, \infty) \to \mathbb{R}^n$

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P$$

since new y' = a(x)y + b(x) has a long enough solution

André Platzer, Stefan Mitsch (CMU)

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

since new y' = a(x)y + b(x) has a long enough solution

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

since new y' = a(x)y + b(x) has a long enough solution

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P$$

Differential Ghost

dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

Differential Auxiliary

dA
$$\frac{\vdash F \leftrightarrow \exists y \ G \ G \vdash [x' = f(x), y' = a(x)y + b(x) \& Q]G}{F \vdash [x' = f(x) \& Q]F}$$

since new y' = a(x)y + b(x) has a long enough solution

Differential Ghost

$$[x' = f(x) \& Q] P \leftrightarrow \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P$$

Differential Ghost

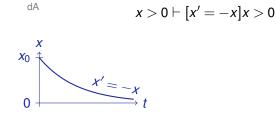
dG
$$\frac{\Gamma \vdash \exists y [x' = f(x), y' = a(x)y + b(x) \& Q] P, \Delta}{\Gamma \vdash [x' = f(x) \& Q] P, \Delta}$$

Differential Auxiliary

dA
$$\frac{\vdash F \leftrightarrow \exists y \ G \ G \vdash [x' = f(x), y' = a(x)y + b(x) \& Q]G}{F \vdash [x' = f(x) \& Q]F}$$

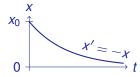
$$\frac{\exists y \ G \vdash F}{G \vdash F} \xrightarrow{F \vdash \exists y \ G} G \vdash [x' = f(x), y' = a(x)y + b(x)]G}{F \vdash \exists y [x' = f(x), y' = a(x)y + b(x)]G}$$

$$\overset{\text{MR}}{\xrightarrow{F \vdash \exists y [x' = f(x), y' = a(x)y + b(x)]F}}_{\text{DG}} \xrightarrow{F \vdash [x' = f(x)]F}$$



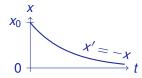
$$\overset{\mathbb{R}}{\xrightarrow{}} + x > 0 \leftrightarrow \exists y \, xy^2 = 1 \quad \text{dl} \quad xy^2 = 1 \vdash [x' = -x, y' = \bigcirc] xy^2 = 1$$

$$\overset{\text{dA}}{\xrightarrow{}} x > 0 \vdash [x' = -x] x > 0$$



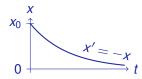
$$\mathbb{R} \xrightarrow{\mathbb{R} \vdash x > 0 \leftrightarrow \exists y \, xy^2 = 1} \ \mathbb{R} \xrightarrow{\text{dl}} \overline{xy^2 = 1 \vdash [x' = -x, y' = \bigcirc} xy^2 = 1$$

$$x > 0 \vdash [x' = -x] = x > 0$$

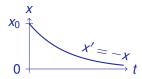


*

$$\begin{array}{c} * & & & \\ \mathbb{R} \xrightarrow{\mathbb{R} \to x > 0 \leftrightarrow \exists y \, xy^2 = 1} & \overset{[:=]}{\overset{dl}{=}} & \vdash [x' := -x][y' := \bigcirc]x'y^2 + x^2yy' = 0 \\ \xrightarrow{\mathbb{R} \to x > 0 \leftrightarrow \exists y \, xy^2 = 1} & \overset{dl}{\xrightarrow{\mathbb{R} \to x > 0}} & xy^2 = 1 \vdash [x' = -x, y' = \bigcirc]xy^2 = 1 \\ \xrightarrow{\mathbb{R} \to x > 0 \vdash [x' = -x]x > 0} & & \\ \end{array}$$



$$\begin{array}{c} \vdash -xy^2 + 2xy & = 0 \\ \\ * & \downarrow \\ \hline \mathbb{R} \vdash x > 0 \leftrightarrow \exists y \, xy^2 = 1 \end{array} \xrightarrow{[i=]} \begin{array}{c} \vdash [x':=-x][y':=\bigcirc]x'y^2 + x2yy' = 0 \\ \hline xy^2 = 1 \vdash [x'=-x,y'=\bigcirc]xy^2 = 1 \end{array} \\ \\ \overset{\text{dA}}{x > 0 \vdash [x'=-x]x > 0} \end{array}$$

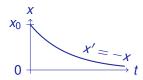


$$could prove if \bigcirc = \frac{y}{2}$$

$$\vdash -xy^2 + 2xy \bigcirc = 0$$

$$\stackrel{*}{\boxtimes} \vdash x > 0 \leftrightarrow \exists y \, xy^2 = 1 \quad \forall xy^2 = 1 \vdash [x' = -x, y' = \bigcirc] x'y^2 + x2yy' = 0$$

$$dA \quad x > 0 \vdash [x' = -x] x > 0$$

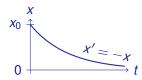


$$could prove if \bigcirc = \frac{y}{2}$$

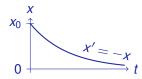
$$\vdash -xy^2 + 2xy \bigcirc = 0$$

$$\stackrel{*}{\boxtimes} \vdash x > 0 \leftrightarrow \exists y \, xy^2 = 1 \quad \forall xy^2 = 1 \vdash [x' = -x, y' = \bigcirc] x'y^2 + x2yy' = 0$$

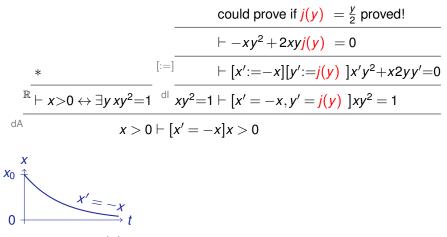
$$dA \quad x > 0 \vdash [x' = -x]x > 0$$



$$\underbrace{\begin{array}{c} \text{could prove if } \frac{y}{2} &= \frac{y}{2} \text{ proved!} \\ \vdash -xy^2 + 2xy\frac{y}{2} &= 0 \\ \hline & + [x':=-x][y':=\frac{y}{2} \quad]x'y^2 + x2yy'=0 \\ \hline & yxy^2=1 \quad \text{dl} \quad xy^2=1 \vdash [x'=-x,y'=\frac{y}{2} \quad]xy^2=1 \\ \hline & x > 0 \vdash [x'=-x]x > 0 \end{array}}$$



This is a recipe for brewing suitable differential ghosts!



Function symbol j(y) can play the role of a substitute ghost

Function symbol j(y) can be substituted uniformly

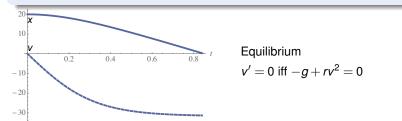
$$\sum_{\substack{x \\ dA \\ x_0 \\ 0 \\ x_0 \\ 0 \\ x_0 \\ 0 \\ x_0 \\ x_0 \\ 0 \\ x_0 \\ x_0$$

Function symbol j(y) needs to be instantiated linearly in y

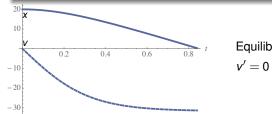
$$g>0 \land r>0 \qquad \rightarrow [x'=v, v'=-g+rv^2 \& x \ge 0 \land v \le 0]$$



$$g>0 \wedge r>0 \qquad \rightarrow [x'=v, v'=-g+rv^2 \& x \ge 0 \wedge v \le 0]$$

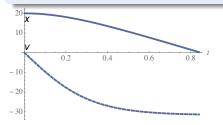


$$g>0 \wedge r>0 \qquad \rightarrow [x'=v, v'=-g+rv^2 \& x \ge 0 \wedge v \le 0]$$



Equilibrium v' = 0 iff $-g + rv^2 = 0$ iff $v = \pm \sqrt{\frac{g}{r}}$

$$g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x'=v, v'=-g+rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$$



Equilibrium v' = 0 iff $-g + rv^2 = 0$ iff $v = \pm \sqrt{\frac{g}{r}}$

dA
$$\overline{v} > -\sqrt{g/r} \vdash [x' = v, v' = -g + rv^2] v > -\sqrt{g/r}$$

Proposition (Aerodynamic velocity limits)
 $g > 0 \land r > 0 \land v > -\sqrt{\frac{g}{r}} \rightarrow [x' = v, v' = -g + rv^2 \& x \ge 0 \land v \le 0] v > -\sqrt{\frac{g}{r}}$
 $20 \bigvee_{t=0}^{20} \bigvee_{t=0}^{t=0} (1 + v^2) \otimes t \ge 0$ iff $v = \pm \sqrt{\frac{g}{r}}$
 $v' = 0$ iff $-g + rv^2 = 0$ iff $v = \pm \sqrt{\frac{g}{r}}$

dl
dl

$$\frac{1}{r^{2}(v+\sqrt{g/r})=1} \vdash [x'=v, v'=-g+rv^{2}, y'=j(x, v, y)] y^{2}(v+\sqrt{g/r})=1 \rightarrow 0$$

 $r^{2}(v+\sqrt{g/r})=1 \rightarrow 0$
Proposition (Aerodynamic velocity limits)
 $g>0 \land r>0 \land v> -\sqrt{\frac{g}{r}} \rightarrow [x'=v, v'=-g+rv^{2} \& x \ge 0 \land v \le 0] v> -\sqrt{\frac{g}{r}}$
 $r^{2}(v+\sqrt{g/r})=1 \rightarrow 0$
 $g>0 \land r>0 \land v> -\sqrt{\frac{g}{r}} \rightarrow [x'=v, v'=-g+rv^{2} \& x \ge 0 \land v \le 0] v> -\sqrt{\frac{g}{r}}$
Equilibrium
 $v'=0 \text{ iff } -g+rv^{2}=0 \text{ iff } v=\pm\sqrt{\frac{g}{r}}$

$$[:=] + [x':=v][v':=-g+rv^{2}][y':=j(x,v,y)]2yy'(v+\sqrt{g/r})+y^{2}v'=0$$

$$[d] \frac{1}{y^{2}(v+\sqrt{g/r})=1} + [x'=v,v'=-g+rv^{2},y'=j(x,v,y)]y^{2}(v+\sqrt{g/r})=1 \rightarrow 0$$

$$dA \frac{1}{v>-\sqrt{g/r}} + [x'=v,v'=-g+rv^{2}]v > -\sqrt{g/r}$$
Proposition (Aerodynamic velocity limits)
$$g>0 \land r>0 \land v> -\sqrt{\frac{g}{r}} \rightarrow [x'=v,v'=-g+rv^{2}\&x\geq 0 \land v\leq 0]v> -\sqrt{\frac{g}{r}}$$

$$[20] \frac{1}{v} + \frac{1}{0.2} + \frac{1}{0.4} + \frac{1}{0.6} + \frac{1}{0.6} + \frac{1}{0.8} + \frac{1}{0.$$

$$\mathbb{R} \xrightarrow{*} \\ \mathbb{R} \xrightarrow{+} \\ \frac{\vdash -ry^{2}(v^{2} - g/r) + y^{2}(-g + rv^{2}) = 0}{\vdash 2y(-r/2(v - \sqrt{g/r})y)(v + \sqrt{g/r}) + y^{2}(-g + rv^{2}) = 0} \\ \frac{\vdash 2y(-r/2(v - \sqrt{g/r})y)(v + \sqrt{g/r}) + y^{2}(-g + rv^{2}) = 0}{\vdash [x' := v][v' := -g + rv^{2}][y' := -r/2(v - \sqrt{g/r})y]2yy'(v + \sqrt{g/r}) + y^{2}v' = 0} \\ \frac{\vdash [x' := v][v' := -g + rv^{2}, y' = -r/2(v - \sqrt{g/r})y]2y'(v + \sqrt{g/r}) + y^{2}v' = 0}{\sqrt{g/r}} \\ \frac{\vdash [x' := v, v' = -g + rv^{2}, y' = -r/2(v - \sqrt{g/r})y]y'(v + \sqrt{g/r}) + y^{2}v' = 0}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}} \\ \frac{\downarrow (v + \sqrt{g/r}) + [x' = v, v' = -g + rv^{2}]v > -\sqrt{g/r}}{\sqrt{g/r}$$

Outline

Learning Objectives

2 Recap: Proofs for Differential Equations

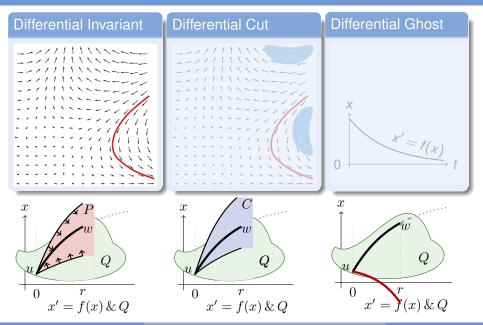
3 A Gradual Introduction to Ghost Variables

- Discrete Ghosts
- Differential Ghosts of Time
- Constructing Differential Ghosts

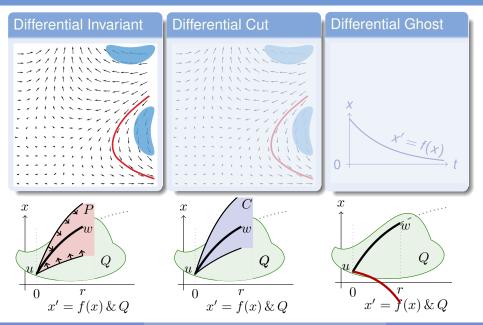
Differential Ghosts

- Substitute Ghosts
- Limit Velocity of an Aerodynamic Ball

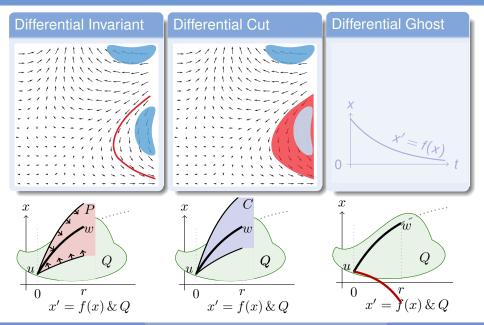
Summary



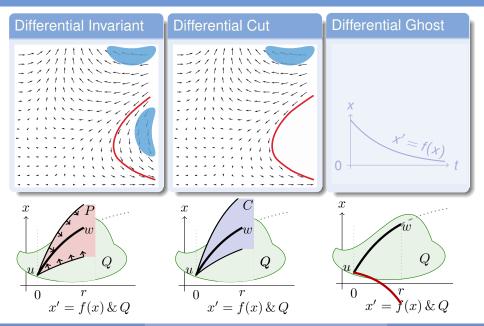
André Platzer, Stefan Mitsch (CMU)



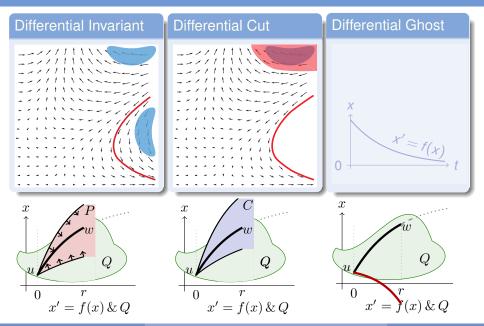
André Platzer, Stefan Mitsch (CMU)



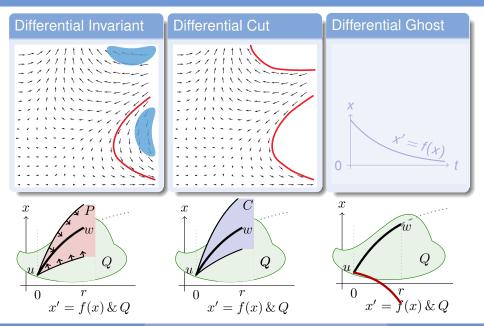
André Platzer, Stefan Mitsch (CMU)

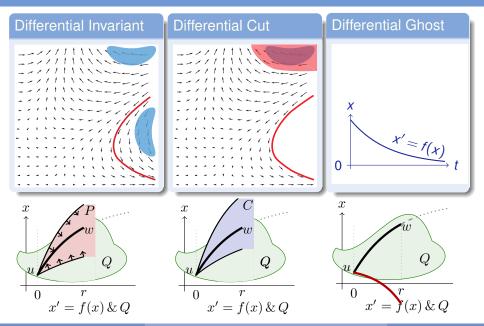


André Platzer, Stefan Mitsch (CMU)

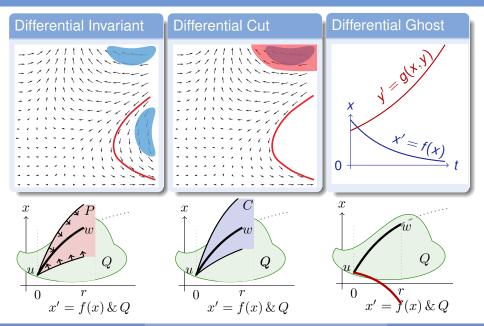


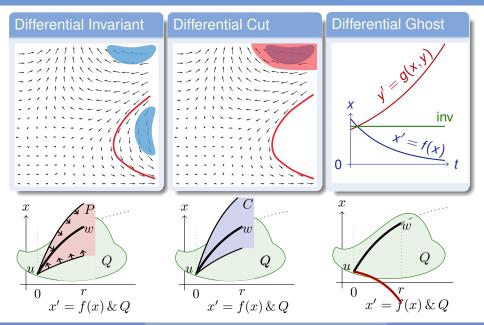
André Platzer, Stefan Mitsch (CMU)





André Platzer, Stefan Mitsch (CMU)





André Platzer, Stefan Mitsch (CMU)

Differential Invariant

$$\frac{Q \vdash [x' := f(x)](P)'}{P \vdash [x' = f(x) \& Q]P}$$

Differential Cut

$$\frac{P \vdash [x' = f(x) \& Q] C P \vdash [x' = f(x) \& Q \land C] P}{P \vdash [x' = f(x) \& Q] P}$$

Differential Ghost

$$\frac{P \leftrightarrow \exists y \ G \quad G \vdash [x' = f(x), y' = g(x, y) \& Q]G}{P \vdash [x' = f(x) \& Q]P}$$

if new y' = g(x, y) has long enough solution

