
SmartDOTS - A Framework for Efficient Data Synchronization on Mobile
Devices

Werner Kurschl, Stefan Mitsch, Rene Prokop
Upper Austrian University of Applied Sciences - Research and Development Competence Center

Hauptstraße 117, A-4232 Hagenberg, Austria

Abstract

Mobile enterprise applications typically access data
from the enterprise’s various applications. Allowing the
mobile application to access these data online only would
be a major hindrance for mobile workers that cannot
assume a constantly available network connection. We
present a middleware called Smart Data Off The Spot
(SmartDOTS) for building nomadic distributed enterprise
applications. In SmartDOTS, the business data model is
represented per device, network, and task; this represen-
tation configures SmartDOTS to provide business data tai-
lored to the specific capabilities (e.g., memory capacity)
of a device, and needs of a task. The SmartDOTS ap-
proach is independent of persistent storages; it is part of
the application developer’s task to provide server-side per-
sistency. Thus, any (legacy) application can be integrated
with SmartDOTS.

1. Introduction

When developing distributed enterprise applications, de-
velopers usually do not explicitly handle problems related
to distributed data access. Middleware provides a higher
level of abstraction and hides the complexity introduced by
distribution.

Current middleware for distributed systems typically
reach for complete transparency (see [2]); their main goal is
to hide heterogeneity (e.g., the device’s location and access
to networked resources) to make remote resources appear
as locally available. This approach is successfully used for
stationary distributed systems with fixed networks and thus
constant network connectivity and quality of service. But
it seems not to be suitable for mobile devices (see [10]) for
the following reasons: distributed transactions, object re-
quests or remote procedure calls assume a connection that
is constantly available, but in mobile systems, varying net-
work environments with typically sporadic connectivity and

low bandwidth are the norm. Furthermore, most middle-
ware support synchronous communication that requires the
client and server to be up and running simultaneously, but
in a mobile environment the client and server are often not
connected at the same time (e.g., due to no network cover-
age, or no network connection to save battery power).

Depending on the intended application scenario, middle-
ware needs to be tailored to meet the distinct challenges
of the scenario. SmartDOTS is designed for nomadic dis-
tributed systems as they are often met in industrial environ-
ments, see Fig. 1.

Figure 1. Structure of a nomadic distributed
system (cf. [10]).

A nomadic distributed system is based on a core of fixed
hosts; at the periphery wireless access points provide access
to this fixed network for mobile devices.

As proposed in [10], SmartDOTS follows a semi-
transparent approach that does not hide all connection is-
sues from the application. Hence, an application built upon
SmartDOTS can adapt to different connection conditions as
it can typically make more efficient and better-quality deci-
sions based on application-specific information than Smart-
DOTS itself. It can, e.g., rely on business logic or ask the

user for decisions in ambiguous situations.
Mobile enterprise applications (like MOSES [8], a mo-

bile safety system for work clearance processes) often sup-
port collaborative working processes. The mobile work
force needs to stay in contact with a central office; however,
networks are unreliable and a connection might not always
be available or it can be slow. Thus, the mobile workers
must also have access to enterprise data when being offline.
Data needs to be replicated to the mobile device—within
the constraints of available local memory—for offline ac-
cess; changes and updates to these data need to be tracked
and synchronized with the enterprise applications when a
network connection can be reestablished.

Data replication can be performed using some form of
predictive algorithms (see [1]). But we believe this solu-
tion has a major drawback: predictions can be wrong. We
promote a less general solution that treats data replication
as part of the business logic. SmartDOTS provides the nec-
essary support for replicating data based on a application
developer or user-defined synchronization model.

Enterprises typically comprise several applications that
might be custom built, acquired, or part of a legacy sys-
tem (see [7]). Mobile enterprise applications often integrate
more than one application into a single mobile application
and thus rely on data provided by each of these. Integrating
data from multiple applications usually increases the band-
width requirements for data synchronization. Additionally,
these applications often show high latency, but users need a
fluent work experience; they do not want to be hindered in
their daily work. It is therefore important to provide an effi-
cient and predictable replication and synchronization mech-
anism for mobile software applications.

Besides the described technical needs for providing data
offline on the device, economical reasons demand for it too.
Wireless networks are often cost intensive; typically, faster
networks are more expensive then slower ones. Addition-
ally, extensive network access imposes an increased energy
drain on the batteries (see [11]). In industrial environments,
where workers frequently need to work in the field for a
whole shift (i.e., eight hours) energy consumption needs to
be kept at a minimum.

2. Related Work

XMIDDLE is a mobile middleware for transparent shar-
ing of XML documents in a peer-to-peer network (see [9]).
XMIDDLE supports sharing of tree-structured data between
peers; therefore, each peer offers access points for other
peers to manipulate its data online or to replicate the data
for working offline.

Bayou ([3]) is a platform of replicated mobile databases
(hosted on mobile devices) on which to build collaborative
applications. A common scenario are several users sharing

data while being disconnected from the rest of the system.
SmartDOTS differs from Bayou in accessing, replicating
and synchronizing any data from enterprise applications.

SodaSync, described in [1], is a programming frame-
work that provides a generic synchronization model for mo-
bile enterprise applications. It can integrate multiple hetero-
geneous backend data stores through a unified high-level
data model. SodaSync focuses on the interface between an
idealized generic data model and real data sources. Data
is modeled using a Service Data Object (SDO)-based repre-
sentation of application data; this approach limits SodaSync
to Java applications based on the SDO framework. Further-
more, it leaves important aspects for mobile applications
like device-, network and task-specific data replication, and
context-dependent network selection unsolved.

The SyncML standard (see [6]) is a specification for
an interoperable data synchronization framework using an
XML-based format. SyncML can be used as an underlying
protocol for data exchange in SmartDOTS.

In contrast to the described systems that primarily syn-
chronize single data stores, SmartDOTS focuses on syn-
chronization of data for complete applications that integrate
multiple data stores. Additionally, SmartDOTS allows ap-
plication designers to specify data packages for synchro-
nization. These data packages can be tailored to fit tasks,
devices, and networks; they usually describe a set of data
needed to perform a specific task on a specific device and
are designed for “take-away”. SmartDOTS focuses on pro-
viding synchronization capabilities over real world (often
synchronous) communication networks and models, and
over multiple data stores. SmartDOTS aims to provide this
functionality as a service to application developers.

3. The SmartDOTS Approach

To overcome some of the above mentioned shortcom-
ings we developed the SmartDOTS (Smart Data Off The
Spot) approach. This approach is driven by the observation,
that mobile industrial workers typically need a known set of
data to perform a specific task. The devices used in an in-
dustrial environment often are of diverse nature; notebooks,
cell phones, and PDAs are used interchangeably. Mobile
workers often start their work at a location with constant
network connection (e.g., the office), but in the course of
their task they stay in areas with only sporadic connectivity.
Thus, data can be packaged to fit the task at hand and loaded
to the device while a network connection is available. Then
this data can be worked on even without a network con-
nection. The tasks of mobile industrial workers are often
collaborative. Hence, synchronization of data is performed
whenever a network connection is available.

The core of SmartsDOTS is a synchronization model
that describes data packages for ”take-away” that fit specific

tasks, devices, and networks. The synchronization model
acts as a configuration to SmartDOTS. The packages are
prefabricated to remove the sensitivity to latency exposed
by legacy applications. The enterprise data is exactly tai-
lored to a task, device, and network. A powerful device
(like a notebook) can replicate more detailed data for sev-
eral tasks, while a less capable device (a PDA or mobile
phone) gets less detailed data or might concentrate on a sin-
gle task. The available network connection also influences
selecting a package for replication. Even a powerful de-
vice on a slow and low-bandwidth connection will prefer to
replicate a small package with less detailed data.

The data in a package is independent of the data rep-
resentation in legacy systems. SmartDOTS operates on the
object-oriented data model provided by any server business-
logic that integrates legacy systems.

Since a mobile worker cannot assume a constantly avail-
able network connection, SmartDOTS communicates its
current state to its users. Mobile enterprise applications
(and especially the end users) are often interested whether
data is provided from the enterprise directly (online) or from
a previously synchronized local data source (offline). Fur-
thermore, they also get informed whether data collected of-
fline is already synchronized to the enterprise.

4. The Synchronization Model

The synchronization model describes devices, networks,
costs, and packages of business data. A package contains
business data that is needed for a specific task (typically a
small fraction of the complete business data contained in
an enterprise application) and tailored to fit a specific de-
vice and network. The business data to include in a pack-
age is represented by its data types and the references be-
tween those types. We call this representation business data
model. A reference can either be weak or strong. When
building packages, strong references are resolved (i.e., the
referenced data gets added to the package); weak references
are not resolved, but the referenced data is loaded on de-
mand. A package defines a query to retrieve the root ob-
jects. Following the references from the root objects builds
the data contained in a package.

The synchronization-model consists of the following
parts: (i) package, (ii) device, (iii) network, (iv) cost model,
(v) type, and (vi) reference.

A package describes data packed by SmartDOTS for im-
mediate retrieval by mobile clients. It contains business data
that is needed for a specific task and tailored to fit a specific
device and network.

A device describes the capabilities, like storage capac-
ity, processing power, and supported networks, of a specific
class of devices.

The network describes a network by its maximum and

average transmission rate and it contains a cost model for
the data to be transferred.

The cost model describes the price for transferring data
over a network at a specific point in time. Network
providers often charge data transfer differently during peak
(business) hours and off-peak hours. The cost model al-
lows the SmartDOTS-Service to decide, which network to
use for sending a package. Packages with a low priority
are only sent over cheap or free-of-charge networks, while
packages with high priority are also allowed to be sent over
costly networks.

Types and references describe the business data con-
tained in a package. Typically, not the complete business
data contained in an enterprise application is to be added to
a package. Data can be limited through the following two
measures: (i) not the complete object graph gets added to a
package, and (ii) an object’s properties and values are only
partially added. Strong references between types indicate
data that has to be kept together in a package, while weak
references are resolved on demand during the work. A type
can be restricted to add only parts of its properties to a spe-
cific package.

5. Architecture

This section describes the design of SmartDOTS. Smart-
DOTS, depicted in Fig. 2, consists of a server-side
SmartDOTS-Service and a client-side SmartDOTS-Engine.

The SmartDOTS-Service integrates the enterprise appli-
cation’s server business logic. The server business logic
typically accesses data in different data sources (often
legacy systems) and combines it in a single object-oriented
business data model. The SmartDOTS-Service continu-
ously builds packages containing data from this business
model and stores them for immediate retrieval in a package
cache. Thus, sensitivity to the legacy systems’ latency is
eliminated. The content of the packages can be configured
on a device, network, cost, etc. basis (as described above in
the synchronization model).

The SmartDOTS-Engine is the primary data storage for
an application. The application can query the SmartDOTS-
Engine for data; SmartDOTS provides these data in the ap-
plication’s business model, similar to directly accessing the
server business logic. The SmartDOTS-Engine retrieves
data in packages (described by the synchronization model)
from the SmartDOTS-Service and stores it in a local replica.
The communication between the mobile client application
and the application’s server business logic is completely
asynchronous (even over a synchronous connection). Yet,
through the local replica the SmartDOTS-Engine is able
to offer a synchronous programming model to its clients,
which is more familiar and convenient to most program-
mers than asynchronous or message oriented programming.

SQL
Adapter

SAP
Adapter

Server
Business
Logic

SmartDOTS
EngineApplication

Network

Replica

SmartDOTS
Service

Package
Cache

Package

Business Data Model Business Data Model

Configuration (Synchronization Model)

Figure 2. The SmartDOTS architecture.

The SmartDOTS-Engine handles data replication, tracks
changes and updates to local data, and synchronizes the lo-
cal replica with the enterprise applications.

Communication between the SmartDOTS-Engine and
the SmartDOTS-Service is not limited to a particular data
representation or communication channel, though, for per-
formance reasons, binary protocols are preferred.

6. The SmartDOTS-Service

The SmartDOTS-Service, shown in Fig. 3, integrates
an enterprise application through the interface IBusiness-
Model. The Packer prefabricates packages from the en-
terprise application’s data and stores them in the package
cache for later retrieval through the SmartDOTS-Engine.

Configuration

Server Business Logic

SAP Adapter SQL Adapter

SmartDOTS-Service

PackerPackage
Cache

IBusinessModel
Business Data Model

Figure 3. The SmartDOTS-Service.

The SmartDOTS-Service (including the Packer) is con-
figurable through the synchronization model described
above; it defines which packages to build, which data the
packages have to contain, and when the package cache has
to up-dated.

The SmartDOTS-Service can be queried for packages.
A package query contains the device, the network, and the
user/task; the package cache is then searched for packages
matching the query. Additionally, a matching synchroniza-
tion model is provided to configure the SmartDOTS-Engine

on the client device (e.g., which network to use for synchro-
nizing data).

7. The SmartDOTS-Engine

The SmartDOTS-Engine offers features to persist and
synchronize a business model with the SmartDOTS-
Service. Therefore it has to track accesses to the
SmartDOTS-Service, handle data synchronization and per-
form automatic service-relocation when the service is not
reachable.

To implement this functionality we identified three ba-
sic approaches: (i) The client-side business model contains,
additionally to the current data, an original state. Thus,
data changes can be collected from the business model it-
self. This approach is similar to the implementation of
ADO.NET Datasets. (ii) All activities on the business
model are tracked by the SmartDOTS-Engine and written
into a log that describes the delta between the local data
and the server data. (iii) Neither the business model holds
changes, nor activities on the data are tracked. Instead,
changes are determined by comparing the current data with
a persisted original state, which could be stored in the local
replica.

We chose the second approach, which is described sub-
sequently. Note that the concepts of automatic service-
relocation, data replication and synchronization apply to all
three approaches with only minor changes.

7.1. Data Management, Replication and
Synchronization

To enable an unhindered working process, it’s necessary
to decouple the availability of data from the network condi-
tions. This requires a local data management on the mobile
device, which fetches data from the server, holds it locally,
and keeps it up to date on both sides.

SmartDOTS distinguishes between data replication prior
to working in the field and data synchronization while work-
ing mobile. Data replication is the initial step of duplicat-
ing the enterprise application’s data to the mobile device.
This process can be triggered by the user login, which auto-
matically leads to download of the user’s configuration and
initial data package. Alternatively, the user can activate the
replication by selecting a new task which makes a new data
package necessary. Usually, this is done when a fast and
reliable network connection is available, as typically a large
amount of data needs to be replicated. In contrast, data syn-
chronization is handled by SmartDOTS automatically dur-
ing the working process to reconcile the mobile database
with the enterprise application’s databases.

Data replication can be simplified compared to data syn-
chronization, as during replication conflicting updates are
assumed not to happen. Thus, data replication always over-
writes data on the mobile device with data from the en-
terprise applications. Data replication then is reduced to
the problem of minimizing the amount of data (and with it
the needed time) for transmission. Trachtenberg et al. in
[13] propose fast synchronization using characteristic poly-
nomial interpolation.

Because of the different requirements of the mobile de-
vices SmartDOTS’ data management offers an abstraction
of storage media—named DataStore—and is able to work
with several DataStores concurrently, independent of their
location. SmartDOTS uses a configuration to arrange these
DataStores. A mobile device, which is prepared for working
disconnected, typically uses (i) a local DataStore that holds
the data in a local replica, (ii) a remote DataStore that is con-
nected to the SmartDOTS-Service, and (iii) a logging Data-
Store that tracks the changes on the local data. The usage
of these DataStores depends on the current network state
and can be influenced by the automatic service-relocation
(see Sect. 7.2): as long as the mobile device is online, the
changes are done on the local data (local DataStore) and
submitted immediately to the server (remote DataStore).
Therefore the changes are performed on the local DataS-
tore and the remote DataStore. When the mobile device be-
comes disconnected, the remote DataStore is not reachable
any more and therefore all changes are performed on the lo-
cal DataStore and on the logging DataStore. This logging
DataStore tracks the changes and builds up a description of
the delta between the local data and the data on the server.

Synchronization is performed upon service-relocation
from offline access of the local replica to online access of
the server. By replaying the delta, which was tracked by the
logging DataStore, a synchronous state can be reestablished
on the remote DataStore.

The management of replicated and distributed databases
requires algorithms for guaranteeing data consistency and
for resolving conflicting updates. Several architectures,

such as Bayou [12] and SodaSync [1], have been proposed
to address these important problems. SmartDOTS was in
the first stage designed for an environment where conflict-
ing updates cannot occur. We consider resolving conflicting
updates as part of our future work.

7.2. Automatic Service-Relocation

When no network connection is available, the
SmartDOTS-Engine performs an automatic service-
relocation to provide data either using a different con-
nection (e.g., GPRS instead of WLAN) or from the local
replica.

We use a combination of the Bridge and State pattern,
both described in [5], to enable the service-relocation (see
Fig. 4).

+Operation()
DataAccessBridge +GoOnline()

+GoOffline()
+OperationImp()

StateBase

+GoOnline()
OfflineState

+GoOffline()
OnlineState

+OperationImp()
ConcreteDataStore

+GetOnlineState()
+GetOfflineState()

StateFactory
IState onlineState = StateFactory.OnlineState();
synchronizer.Synchronize();
dataAccessBridge.dataAccess = onlineState;

dataAccess.OperationImp()

try {
 dataStore.OperationImp();
 switchStrategy.SwitchOnline();
} catch {
 switchStrategy.SwitchOffline();
}

Application

returns the best available
state (e.g., by cost)

+Synchronize()
Synchronizer

+SwitchOnline()
+SwitchOffline()

SwitchStrategy

-source -target

if (switchIntervalExceeded) {
 state.GoOnline();
}

+OperationImp()
DataStoreBase

Figure 4. Combined Bridge and State pattern.

The Bridge hides the concrete State (online or offline)
currently in use from its clients. Incoming requests to pro-
cess a transaction are forwarded to the current State, which
in turn forwards it to its DataStore (e.g., the SmartDOTS-
Service or the local replica). When the DataStore is not
able to process the request (e.g., because the network con-
nection fails), the State asks the switch strategy to switch
offline. The StateFactory provides the State to switch to
(e.g., depending on the costs involved with using the State).
The Bridge is then modified to access the OfflineState in
subsequent requests; the current request is satisfied by the
OfflineState as well. Upon successful completion of a re-
quest, a State asks the SwitchStrategy to switch online. The

SwitchStrategy decides to switch online, if e.g., a network
connection is available and a defined switching interval is
expired.

7.3. Transactions

In the second approach, SmartDOTS tracks all activities
on the business data model. Atomic units of work are re-
ported to SmartDOTS and represented by transactions. Our
transaction applies Fowler’s pattern Unit of Work (see [4]).
It keeps track of everything that is done during a business
transaction and affects the enterprise data (e.g., objects be-
ing created, modified or deleted). When the transaction is
committed, it gets executed on the DataStores. Each DataS-
tore can decide what to do with a transaction, but usually it
leads to a package being sent to the SmartDOTS-Service or
tracked locally. A transaction is always executed success-
fully on all DataStores or it gets rolled back.

A transaction represents one or more actions to perform.
These actions usually have results that are collected by the
transaction and provided to the client.

8. Conclusion and Further Work

We present the SmartDOTS framework for building no-
madic distributed enterprise applications that supports data
replication and synchronization from various enterprise ap-
plications. The framework allows the modeling of business
data, so that device-, network and task-specific data replica-
tion, and context-dependent network selection can be mod-
eled and automatically be executed by the framework. It
solves the problem of using a heterogeneous set of mobile
devices with different capabilities by modeling and config-
uration techniques.

We implemented a mobile enterprise application named
MOSES based on a partial implementation of SmartDOTS.
MOSES currently works on PDAs and notebooks. As part
of our future work, we will enhance data synchronization;
especially we will focus on resolving conflicting updates.
We will also extend MOSES to support smaller devices
(smart-phones or cell-phones) to further evaluate Smart-
DOTS with very limited devices.

References

[1] P. Castro, F. Giraud, R. Konuru, A. Purakayastha, and
D. Yeh. A Programming Framework for Mobilizing En-
terprise Applications. In Proceedings of the Sixth IEEE
Workshop on Mobile Computing Systems and Applications
(WMCSA’04), pages 196–205, Washington DC, USA, 2004.
IEEE Computer Society.

[2] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed
Systems—Concepts and Design. Addison-Wesley, Boston,
3rd edition, 2001.

[3] A. J. Demers, K. Petersen, M. J. Spreitzer, D. B. Terry,
M. M. Theimer, and B. B. Welch. The Bayou Architec-
ture: Support for Data Sharing Among Mobile Users. In
Proceedings of the Workshop on Mobile Computing Systems
and Applications, Santa Cruz, USA, 1994. IEEE.

[4] M. Fowler. Patterns of Enterprise Application Architecture.
Addison-Wesley, Boston, 2003.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, Boston, 1995.

[6] U. Hansmann, R. Mettala, A. Purakayastha, and P. Thomp-
son. SyncML: Synchronizing and Managing Your Mobile
Data. Prentice Hall, 2002.

[7] G. Hohpe and B. Woolf. Enterprise Integration Patterns.
Addison-Wesley, Boston, 2004.

[8] W. Kurschl, S. Schmid, and C. Domscha. MOSES - A
Mobile Safety System for Work Clearance Processes. In
Proceedings of the 4th International Conference on Mobile
Business, pages 166–172, Sydney, Australia, 2005. IEEE.

[9] C. Mascolo, L. Capra, and W. Emmerich. An XML Based
Middleware for Peer-to-Peer Computing. In Proceedings
of the International Conference on Peer-to-Peer Computing,
pages 69–74. IEEE Computer Society, 2001.

[10] C. Mascolo, L. Capra, and W. Emmerich. Middleware for
Mobile Computing (A Survey). In Networking 2002 Tutorial
Papers, pages 20–58. Springer, 2002.

[11] T. Starner. Powerful change part 1: Batteries and possible
alternatives for the mobile market. IEEE Pervasive Comput-
ing, 2(4):86–88, 2003.

[12] D. B. Terry, M. M. Theimer, K. Petersen, A. J. Demers, M. J.
Spreitzer, and C. H. Hauser. Managing Update Conflicts in
Bayou, a Weakly Connected Replicated Storage System. In
Proceedings of the 15th ACM Symposium on Operating Sys-
tem Principles (SOSP), pages 172–183, Copper Mountain
Resort, USA, 1995. ACM.

[13] A. Trachtenberg, D. Starobinski, and S. Agarwal. Fast PDA
Synchronization Using Characteristic Polynomial Interpola-
tion. In Proceedings of the 21st Annual Joint Conference of
the IEEE Computer and Computer Societies (INFOCOM),
New York, USA, 2002. IEEE.

