
1

Formal Artifacts as Explanations for System
Correctness in Cyber-Physical Systems

Stefan Mitsch
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, USA

Email: smitsch@cs.cmu.edu

Abstract—Autonomous systems, such as self-driving cars and
robots, are increasingly often entrusted with operating in safety-
critical ways, which makes certification an important tool to
ensure that systems are operating as intended. This paper argues
that formal methods are a useful basis for certification not only
in terms of their rigor, but also as a way of explaining evidence
of system correctness at the right level of detail.

Index Terms—formal verification, theorem proving, hybrid
systems, refinement, runtime verification, explanations

I. INTRODUCTION

Semi-autonomous and fully autonomous systems—such
as driver assistance systems, self-driving cars, aircraft, and
robots—are increasingly often entrusted with operating in
safety-critical ways. This makes certification an important tool
to scrutinize systems before they are deployed and ensure that
they are operating as intended. Obtaining evidence of system
correctness, however, is not straightforward: assurance cases
in combination with testing the system itself is understood
well and produces well-understood statistical estimates of
the risks of safety violation, but in autonomous systems it
requires unrealistically large amounts of test runs to achieve
the required confidence [1]. Formal verification of symbolic
models, in contrast, provides guarantees for infinitely many
situations, but only some methods provably guarantee that the
analyzed models are sufficiently accurate [2]. Reliably predict-
ing the behavior of a system and understanding its assurance
arguments becomes even more challenging when machine
learning components are operating parts of the system [3].
Recently, using formal methods to explain the behavior of
learned agents has sparked research interest, e.g., [4], [5].

Even though formal verification is a suggested technique in
some certification standards (e.g., the formal methods supple-
ment to DO-178C in avionics), it is still an open question how
to best present and explain formal artifacts. In this paper, we
argue that (i) deductive verification and proofs provide various
aspects of direct evidence about system correctness, and that
(ii) formal techniques are a useful basis for explaining such
evidence to a diverse audience with their different situational
needs in understanding systems at the right level of detail [5].

II. MODELS AS EXPLANATIONS

Computing systems that reach out into the real world
with actuators to affect physical processes can be understood
mathematically as hybrid systems and hybrid games [6],
which describe computations plus their physical effects in

a uniform modeling language. Deductive verification tools
like KeYmaera X [7] implement differential dynamic (game)
logic [6] to rigorously analyze the behavior of hybrid systems
and games models for safety and liveness properties, for
invariants that are preserved throughout system execution, as
well as for winning strategies in game settings.

With their unambiguous semantics, formal models can
themselves be useful sources for explanation in the following
ways: (i) the structure of modular formal hybrid systems
models with clearly identified assumptions and guarantees may
help in understanding the dynamic interaction between the
components of a system; (ii) formal hybrid systems models
can be expressed at varying levels of abstraction, navigating
these levels may help in gaining an understanding of system
behavior at an abstract level before understanding the details of
the full system; and (iii) the predictive power of formal hybrid
systems models may help in understanding the link between
model and true system. We discuss details for each of these
three aspects in the subsections below.

A. Decomposition
Component-based verification approaches [8], [9] help man-

age proof complexity by allowing users to decompose a
system into separate components with local responsibilities.
In that process, we identify contracts in terms of assumptions
that components make about their environment and verified
guarantees about their outputs under these assumptions. In
hybrid systems models, the physical dynamics of components
is expressed with differential equations, and for contracts ad-
ditionally summarized using first-order real-arithmetic (FOLR)
abstractions. We construct FOLR abstractions from the hybrid
systems models when conducting a formal proof, rather than
purely modeling them as requirements. Still, when creating
architecture models, there is significant freedom in how re-
sponsibility is shared between components: the proofs linking
differential equations with their FOLR abstractions can serve
as explanations for archictural choices.

Additionally, the interaction between components in a
cyber-physical system takes on a variety of different forms,
such as direct communication, sensing, or physical manipu-
lation, all with their own assumptions and guarantees (e.g.,
about sensor uncertainty). When composing component proofs
to a full system proof, the composition arguments about the
compatibility between assumptions and guarantees may serve
as explanations about the dynamic interaction between the
components of a system.



2

For example, in [10] an ego-agent controller safely navigates
among mobile environment agents. The discrete abstraction
of the environment agent motion describes a region of po-
sitions that is reachable from the current position in some
bounded time. Using such an abstraction, we separate the
local responsibilities of the ego-agent controller and the mobile
environment agents with contracts. The components become
connected through sensors that obtain position measurements.

B. Model Refinement and Instantiation

Mathematical arguments about cyber-physical systems are
often more crisply formulated at a higher level of abstraction
and in formal models with fully symbolic parameters. This
makes the resulting proofs applicable to a wide range of actual
systems, but may obfuscate the assurance argument for each
particular one of them. Formal refinement arguments (e.g., in
Hybrid Event-B [11], differential refinement logic [12], [13])
or formal instantiation/substitution arguments [14] create a
hierarchy of models at various levels of abstraction, which can
be navigated to gain an increasingly detailed understanding
of the system behavior while preserving provable correctness
along the refinement/instantiation hierarchy.

Crucially, however, in cyber-physical systems the final re-
finement step (from model to true system) is not solvable
through refinement or code synthesis, because a vital part of
the system is formed by non-engineered real-world dynamics.
Next, we discuss how we can obtain explanations for this final
refinement step even in cyber-physical systems.

C. Model Validation

For a comprehensive assurance argument, we want evidence
about the correctness of the true system (not just about models
of it). Neither testing alone nor formal verification alone can
provide a comprehensive explanation of system correctness.
Testing can only cover a finite amount of the infinitely
many possible scenarios in a cyber-physical system. Formal
methods, in contrast, provide strong correctness guarantees
about all of the possible scenarios in a formal model of the
system, e.g., in the form of proofs. This poses an inherent
limitation for refinement and instantiation arguments: there
always exists a gap to the true system behavior, no matter how
detailed we express formal models. The remaining question,
therefore, is whether the analyzed formal model accurately
reflects the modeled system, a question tackled by model val-
idation. Only few methods, however, combine offline proofs
and model validation in a provably correct way: ModelPlex [2]
transforms by proof hybrid systems models into monitoring
conditions. The monitoring conditions inherit the predictive
power of models to describe expected behavior, which makes
the monitors capable of flagging discrepancies between models
and true system execution. The monitoring conditions serve as
a provably correct link between formal verification and model
validation/testing and can be useful as explanations in the
following ways. ModelPlex monitoring conditions can provide

• validation evidence about how accurately a model reflects
the modeled system (are there discrepancies between
collected data and the formal model?);

• validation evidence about model parameters (how ro-
bustly does the system fit the model, how robustly does
it satisfy the inherited safety properties?);

• coverage evidence about a test suite (which aspects of the
formal model are covered by test scenarios?);

• validation evidence about the safety-relevant similarity
between a simulation environment and a true environ-
ment; may help in understanding the challenges of sim-
to-real transfer in machine learning (how do the training
scenarios in simulation compare to the encountered situ-
ations in true system execution?);

• dynamic evidence about system degradation or environ-
ment changes (how does safety robustness compare over
a history of system executions?).

Model validation is particularly challenging in cyber-
physical systems, because judgments about model accuracy
must be made from imperfect sensors or based on partially
available information [15]. In the presence of sensor uncer-
tainty and partial observability, model validation, therefore,
checks for existence of model executions that explain the
values observed in the true system [15].

In order to align a symbolic monitor obtained from a
symbolic model with the dynamic realities of the system,
parametrization is required prior to model validation. Uniform
substitution [14] is a technique to prove parameterized models
from the symbolic model proofs without additional effort.

III. PROOFS AS EXPLANATIONS

Hybrid systems proofs combine reasoning principles from
a multitude of fields. In order to be useful as explanations,
the challenge is to present proofs at an appropriate level
of abstraction, without jeopardizing the soundness of their
conclusions. High-level reasoning principles can be useful to
gain an overall understanding of the safety argument, while
foundational axioms can provide justification for each of the
high-level reasoning steps if needed. In [16], different prover
designs are compared for their tradeoffs in terms of achieving
such levels of abstraction: traditional prover designs favor
raw reasoning speed but each new rule increases the trusted
code base, while a small-core design emphasizes a small set
of foundational axioms and a universal axiom application
algorithm, e.g., uniform substitution [14]. In either design,
proofs can be explained using invariants and winning strategies
as major proof insights, but only the small-core design with
executable derived rules (e.g., in a tactic framework) allows
us to explore a proof at varying degrees of abstraction without
increasing the trusted code base.

A. System Invariants and Winning Strategies
Hybrid systems and hybrid games proofs, just like other

proofs of sufficient complexity, are typically structured into
supporting lemmas that identify intermediate proof obliga-
tions. In hybrid systems, those intermediate proof obliga-
tions identify important safety-related characteristics of the
system; their role as proof insight in derived proof rules
concisely summarizes high-level reasoning concepts—justified
from foundational axioms—and might serve as explanations of
safety-related properties of the system behavior as follows.



3

a) Inductive invariants: are guaranteed to be maintained
by the combined discrete and continuous system behavior. The
derived rule “loop” [16] below expresses that property P is
true after all possible ways of executing the repeated program
α∗ (conclusion below the horizontal bar) when we show three
properties of a loop invariant J (premises above the horizontal
bar): (i) J must hold under the assumptions (left premise,
J or alternatives ∆ follow from the assumptions Γ), (ii) be
maintained by the program (middle premise, assuming J , all
runs of the loop body α maintain J , expressed by [α]J), and
(iii) imply safety (right premise, P is true assuming J).

(loop)
Γ ` J,∆ J ` [α]J J ` P

Γ ` [α∗]P,∆
Conducting proofs with parametric loop invariants [17]

allows us to explore different options for loop invariants
in the same proof. That way we can explore modifications
of provided loop invariants when scrutinizing a proof for
certification to gain a better understanding of the ways in
which a safety argument could be strengthened.

b) Intermediate conditions: identify program contracts,
e.g., what a controller must guarantee for the continuous
dynamics to stay within a safe region. The derived rule MRp
below identifies condition Q to explain how reasoning about a
sequential program α;β is separated into local program proofs
[α]Q from assumptions Γ and [β]P from assumptions Q:

(MRp)
Γ ` [α]Q,∆ Q ` [β]P

Γ ` [α;β]P,∆
c) Proof rules for continuous dynamics: differential

cuts [18] describe continuous dynamics with increasingly fine-
grained regions, which explain the safety-relevant boundaries
of continuous dynamics (e.g., dynamics never exceeds some
threshold). A useful technique to prove and explain safety
properties of continuous dynamics are energy conservation
arguments, which typically require constructing a “ghost”
differential equation [18] that balances energy with the original
differential equation. Once constructed, we then characterize
the continuous dynamics with differential invariants [14], Bar-
rier certificates [19], or Lyapunov functions that are preserved
throughout the continuous dynamics. Proof rules for such
reasoning concepts about continuous dynamics can be de-
rived [18] in dL. These derived proof rules not only summarize
the more fine-grained reasoning steps of the prover core,
but also can check the results of numeric invariant/Lyapunov
generation methods in order to symbolically explain and
justify their correctness.

d) Stability proofs: explain absence of subtle instability
behavior [20] known to occur in switched systems of combined
discrete switching behavior and continuous system behavior.
In [21] several proof rules for different switching mechanisms
are derived within dL. Stability arguments based on these rules
explain how a system remains stable under small perturbations
(stability) and eventually dissipates the energy of these pertur-
bations (attractivity).

e) Winning strategies: provide witnesses for the choices
(existential) of an ego-agent in order to counteract adversarial
(universal) environment behavior in hybrid games proofs.
For example, [22] identifies climb rate strategies for vertical
aircraft collision avoidance (e.g., when intruder aircraft is in

a certain region, climb with at least some minimum upwards
acceleration; in another region, descend). Together with dis-
crete and continuous invariants, winning strategies summarize
and explain the main proof arguments.

In terms of explanations, invariant regions and other condi-
tions are amenable for graphical presentation, while winning
strategies represent step-by-step instructions of how to react to
certain events and conditions. Their justification using proof
rules derived from core axioms opens up the possibility to
understand the proof in a hierarchical sense, as discussed next.

B. Proofs at Different Levels of Abstraction

Theorem provers range from fully interactive to fully au-
tomatic, with most systems implementing a combination of
interaction and automation to tackle complex systems. For
example, the hybrid systems prover KeYmaera X [7] pro-
vides automated proof heuristics built on top of a tactics
framework [23], which steers the soundness-critical prover
core to generate proof terms [24]. Proof terms provide the
most detailed view of a proof in the form of the soundness-
critical operations of the core, such as builtin rules and axioms,
while tactics provide an intermediate explanation in terms of
the main proof insights, and the automated proof heuristics
document existence of a proof. Even though proof terms justify
correctness from just a small set of core logical concepts and,
hence, reduce trusting the proof to trusting just these core
concepts (instead of trusting the much larger prover software),
they are difficult to decipher for their sheer size and lack of
presentation structure. Proof terms are therefore mainly useful
for proof checking. On the other end of the spectrum, fully
automated proofs (as produced, e.g., by SAT/SMT solvers)
or automated checks produced by reachability analysis tools,
require trust in the full codebase of the tool.

A small-core theorem prover design, such as followed by
KeYmaera X, provides opportunity to implement high-level
reasoning steps as derived rules in a way that does not extend
the soundness-critical core of the theorem prover [16]. Such a
design allows us to provide proof explanations by unwinding
proof details for all or some steps in a proof to produce a
hierarchy of proof details, similar to abstraction in models. In
this way, we can navigate a proof at varying levels of detail
as our understanding of the proof increases. Fig. 1 shows a
screenshot of the KeYmaera X UI with the single-step derived
rule “loop” for induction proofs, and its expanded justification
in terms of others tactics, core axioms, and proof rules.

IV. DISCUSSION AND OPEN CHALLENGES

Early successes in formal methods for certifying cyber-
physical systems (e.g., the Clearsy safety platform [25]) focus
on providing a pre-certified platform, so that subsequent
development using the platform can fast-track certification.
Others emphasize the development process for certification,
rather than the produced artifacts. In this paper, we argue for
a complementary approach that considers aspects of formal
models and proofs as explanations for certification. We take
a holistic view that emphasizes the importance of providing
explanations for certification authorities to scrutinize both the



4

Fig. 1. Screenshot of the KeYmaera X UI: the derived rule “loop” offers a one-step explanation in terms of an induction proof; the icon < to the right of this
step is activated and shows a detailed justification of “loop” in terms of core axioms and other proof rules. The internal steps of tactic “unfold” are hidden.

models (how accurately do models reflect reality?) and the
proofs (what are the major proof arguments?).

Even though the proof structure in terms of lemmas and
derived rules are a possible way of achieving proof explana-
tions at varying degree of detail, proof trustworthiness and
presentation is challenging since computer-checked proofs
may have millions of proof steps. Another aspect of proofs
that is not yet explored here is vacuity: proofs may succeed
for the wrong reasons (e.g., because models exclude important
behavior), and we need logic tools to demonstrate that our
models and proofs are not vacuously true [26].

ACKNOWLEDGMENTS

This material is based upon work supported by the US Air
Force and DARPA under Contract No. FA8750-18-C-0092.

REFERENCES

[1] N. Kalra and S. M. Paddock, “Driving to safety: How many miles of
driving would it take to demonstrate autonomous vehicle reliability?”
RAND Corporation, Tech. Rep. RR-1478-RC, 2016.

[2] S. Mitsch and A. Platzer, “ModelPlex: Verified runtime validation
of verified cyber-physical system models,” Form. Methods Syst. Des.,
vol. 49, no. 1-2, pp. 33–74, 2016, selected papers from RV’14.

[3] H. Torfah, S. Junges, D. J. Fremont, and S. A. Seshia, “Formal analysis
of ai-based autonomy: From modeling to runtime assurance,” in RV,
2021, pp. 311–330.

[4] S. Jha, T. Sahai, V. Raman, A. Pinto, and M. Francis, “Explaining AI
decisions using efficient methods for learning sparse boolean formulae,”
J. Autom. Reason., vol. 63, no. 4, pp. 1055–1075, 2019.

[5] D. Bayani and S. Mitsch, “Fanoos: Multi-resolution, multi-strength,
interactive explanations for learned systems,” in VMCAI, 2022, pp. 43–
68.

[6] A. Platzer, “Differential game logic,” ACM Trans. Comput. Log., vol. 17,
no. 1, pp. 1:1–1:51, 2015.

[7] N. Fulton, S. Mitsch, J.-D. Quesel, M. Völp, and A. Platzer, “KeYmaera
X: An axiomatic tactical theorem prover for hybrid systems,” in CADE,
2015, pp. 527–538.

[8] A. Müller, S. Mitsch, W. Retschitzegger, W. Schwinger, and A. Platzer,
“Tactical contract composition for hybrid system component verifica-
tion,” STTT, vol. 20, no. 6, pp. 615–643, 2018.

[9] S. Lunel, S. Mitsch, B. Boyer, and J. Talpin, “Parallel composition
and modular verification of computer controlled systems in differential
dynamic logic,” in FM, 2019, pp. 354–370.

[10] A. Müller, S. Mitsch, W. Schwinger, and A. Platzer, “A component-
based hybrid systems verification and implementation tool in KeYmaera
X (tool demonstration),” in CyPhy, 2018, pp. 91–110, selected papers.

[11] R. Banach, M. J. Butler, S. Qin, N. Verma, and H. Zhu, “Core hybrid
Event-B I: single hybrid Event-B machines,” Sci. Comput. Program.,
vol. 105, pp. 92–123, 2015.

[12] S. M. Loos and A. Platzer, “Differential refinement logic,” in LICS,
2016, pp. 505–514.

[13] S. Mitsch, J.-D. Quesel, and A. Platzer, “Refactoring, refinement, and
reasoning: A logical characterization for hybrid systems,” in FM, 2014,
pp. 481–496.

[14] A. Platzer, “A complete uniform substitution calculus for differential
dynamic logic,” J. Autom. Reas., vol. 59, no. 2, pp. 219–265, 2017.

[15] S. Mitsch and A. Platzer, “Verified runtime validation for partially
observable hybrid systems,” CoRR, vol. abs/1811.06502, 2018.

[16] ——, “A retrospective on developing hybrid systems provers in the
KeYmaera family - A tale of three provers,” in Deductive Software
Verification: Future Perspectives, ser. LNCS, W. Ahrendt, B. Beckert,
R. Bubel, R. Hähnle, and M. Ulbrich, Eds. Springer, 2020, vol. 12345,
pp. 21–64.

[17] S. Mitsch, “Implicit and explicit proof management in KeYmaera X,”
in Proceedings of the 6th Workshop on Formal Integrated Development
Environment, F-IDE@NFM 2021, 24-25th May 2021, 2021, pp. 53–67.

[18] A. Platzer and Y. K. Tan, “Differential equation invariance axiomatiza-
tion,” J. ACM, vol. 67, no. 1, pp. 6:1–6:66, 2020.

[19] S. Prajna and A. Jadbabaie, “Safety verification of hybrid systems using
barrier certificates,” in HSCC, 2004, pp. 477–492.

[20] D. Liberzon, Switching in Systems and Control, ser. Systems & Control:
Foundations & Applications. Birkhäuser, 2003.

[21] Y. K. Tan, S. Mitsch, and A. Platzer, “Verifying switched system stability
with logic,” in HSCC. ACM, 2022, pp. 1–11.

[22] R. Cleaveland, S. Mitsch, and A. Platzer, “Formally verified next-
generation airborne collision avoidance games in ACAS X,” Transac-
tions on Embedded Computing Systems, 2022.

[23] N. Fulton, S. Mitsch, R. Bohrer, and A. Platzer, “Bellerophon: Tactical
theorem proving for hybrid systems,” in ITP, 2017, pp. 207–224.

[24] N. Fulton and A. Platzer, “A logic of proofs for differential dynamic
logic: Toward independently checkable proof certificates for dynamic
logics,” in CPP, 2016, pp. 110–121.

[25] T. Lecomte, D. Déharbe, P. Fournier, and M. Oliveira, “The CLEARSY
safety platform: 5 years of research, development and deployment,” Sci.
Comput. Program., vol. 199, p. 102524, 2020.

[26] Y. Selvaraj, J. Krook, W. Ahrendt, and M. Fabian, “On how to not
prove faulty controllers safe in differential dynamic logic,” CoRR, vol.
abs/2207.05854, 2022.


	I Introduction
	II Models as Explanations
	II-A Decomposition
	II-B Model Refinement and Instantiation
	II-C Model Validation

	III Proofs as Explanations
	III-A System Invariants and Winning Strategies
	III-B Proofs at Different Levels of Abstraction

	IV Discussion and Open Challenges
	References

