
stefan mitsch

modeling and analyzing hybrid
systems with sphinx

sϕnx a user manual

Computer Science Department
Carnegie Mellon University / Johannes Kepler University
http://www.cs.cmu.edu/∼smitsch
December 2013



Stefan Mitsch: Modeling and Analyzing Hybrid Systems with Sphinx, A User
Manual, © December 2013.

website:
http://www.cs.cmu.edu/~smitsch

e-mail:
smitsch@cs.cmu.edu

http://www.cs.cmu.edu/~smitsch
mailto:smitsch@cs.cmu.edu


C O N T E N T S

1 overview 1

1.1 General Information . . . . . . . . . . . . . . . . . . . . . . . . 1

2 installation 3

2.1 Installation from Eclipse Update Site . . . . . . . . . . . . . . . 3

2.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Install and Configure KeYmaera . . . . . . . . . . . . . 4

2.2.2 Configure the Editors . . . . . . . . . . . . . . . . . . . 4

2.2.3 Configure Mathematica and Hybrid Program Simulation 5

2.2.4 Show Additional Views . . . . . . . . . . . . . . . . . . 6

2.2.5 Add Modeling Templates . . . . . . . . . . . . . . . . . 6

3 textual modeling 7

3.1 Create a new Project . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Refactor your Model . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Further Editor Features . . . . . . . . . . . . . . . . . . . . . . 8

4 graphical modeling 11

4.1 Create a new Graphical Model . . . . . . . . . . . . . . . . . . 11

4.2 Model System Structure . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Model System Dynamics . . . . . . . . . . . . . . . . . . . . . . 13

4.4 Generate Textual Model . . . . . . . . . . . . . . . . . . . . . . 19

5 hybrid system analysis 21

5.1 Plot Simulated Traces of Hybrid Programs . . . . . . . . . . . 21

5.2 Verify a Model with KeYmaera . . . . . . . . . . . . . . . . . . 22

6 proof collaboration 23

6.1 Share and Collaborate on Textual Models . . . . . . . . . . . . 23

6.2 Share and Collaborate on a Proof . . . . . . . . . . . . . . . . . 23

6.3 Export Open Goals of Partial Proofs . . . . . . . . . . . . . . . 24

6.4 Import Geometric Relevance Filtering Results . . . . . . . . . 25

bibliography 27

iii



L I ST O F F I G U R E S

Figure 1.1 Screenshot of the Sϕnx toolkit . . . . . . . . . . . . . . 1

Figure 2.1 KeYmaera configuration . . . . . . . . . . . . . . . . . 4

Figure 2.2 Configure dL popup editors . . . . . . . . . . . . . . . 5

Figure 2.3 Configure hybrid program simulation . . . . . . . . . 6

Figure 3.1 Create a new dL project . . . . . . . . . . . . . . . . . 7

Figure 3.2 Open the quick outline . . . . . . . . . . . . . . . . . . 8

Figure 3.3 Syntax checking . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.4 Code completion . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.5 Code folding . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 3.6 Quick peek into folded code . . . . . . . . . . . . . . . 9

Figure 4.1 Create a new uml model . . . . . . . . . . . . . . . . . 11

Figure 4.2 Create a new class . . . . . . . . . . . . . . . . . . . . . 12

Figure 4.3 Flag properties as constant or variable . . . . . . . . . 13

Figure 4.4 Define constraints using the dL popup editor . . . . . 13

Figure 4.5 Add a new constraint . . . . . . . . . . . . . . . . . . . 14

Figure 4.6 Select the constrained element . . . . . . . . . . . . . 14

Figure 4.7 Specify a constraint as OpaqueExpression . . . . . . . 14

Figure 4.8 Enter dL as constraint specification language . . . . . 15

Figure 4.9 Use dL to specify a constraint body . . . . . . . . . . . 15

Figure 4.10 Use dL to specify the continuous dynamics . . . . . . 16

Figure 4.11 Hierarchically decompose behavior . . . . . . . . . . . 16

Figure 4.12 Overview of bouncing ball dynamics . . . . . . . . . . 17

Figure 4.13 Add a new activity diagram . . . . . . . . . . . . . . . 17

Figure 4.14 Discrete dynamics of the bouncing ball example . . . 18

Figure 4.15 Create a new hyperlink . . . . . . . . . . . . . . . . . . 18

Figure 4.16 Set a default hyperlink . . . . . . . . . . . . . . . . . . 18

Figure 4.17 Transform a uml model into a textual dL model . . . 19

Figure 5.1 Inspect simulated traces of hybrid programs . . . . . 21

Figure 5.2 Run KeYmaera from the context menu of any .key or
.proof file . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 5.3 The KeYmaera console. . . . . . . . . . . . . . . . . . . 22

Figure 6.1 Comparison of textual models . . . . . . . . . . . . . . 23

Figure 6.2 Proof comparison . . . . . . . . . . . . . . . . . . . . . 24

Figure 6.3 Export an arithmetic goal . . . . . . . . . . . . . . . . 24

Figure 6.4 Search an open goal . . . . . . . . . . . . . . . . . . . . 24

Figure 6.5 Export file . . . . . . . . . . . . . . . . . . . . . . . . . 25

Figure 6.6 Select hiding suggestions . . . . . . . . . . . . . . . . 26

Figure 6.7 Select applicable goals . . . . . . . . . . . . . . . . . . 26

iv



1 OV E RV I E W

1.1 general information

This document is a user manual for the Sϕnx verification-driven engineer-
ing environment for hybrid systems. Sϕnx is an extensible verification-

driven engineering toolkit based on the Eclipse platform. It provides textual
and graphical modeling editors to describe the structure, the discrete dy-
namics, and the continuous dynamics of cyber-physical systems. Sϕnx uses
KeYmaera as hybrid verification tool.

Figure 1.1: Screenshot of the Sϕnx toolkit

Details on the underlying principles of Sϕnx can be found in [3]. Sϕnx
was used in formal verification case studies on road traffic safety [2] and
obstacle avoidance for autonomous robotic ground vehicles [1].

1





2 I N STA L L AT I O N

Abstract. This chapter introduces the installation procedure of Sϕnx
and the subsequent configuration steps to setup KeYmaera as hybrid
verification tool.

Contents
2.1 Installation from Eclipse Update Site . . . . . . . . . . . . . . . . 3
2.2 Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Install and Configure KeYmaera . . . . . . . . . . . . . . 4
2.2.2 Configure the Editors . . . . . . . . . . . . . . . . . . . . 4
2.2.3 Configure Mathematica and Hybrid Program Simulation 5
2.2.4 Show Additional Views . . . . . . . . . . . . . . . . . . . 6
2.2.5 Add Modeling Templates . . . . . . . . . . . . . . . . . . 6

2.1 installation from eclipse update site

Sϕnx comes with an Eclipse update site, which automates installation and
updates. It assumes, that Eclipse Kepler (Modeling Tools) is already

downloaded from http://www.eclipse.org and installed. To check for Sϕnx
updates, click Help
→ Check for Updates

.

1. Start Eclipse

2. Click Help→ Install Modeling Components to open the modeling compo-
nent selection wizard

3. Select Xtext and Papyrus and click Finish. Follow the on-screen instruc-
tions to install these modeling components.

4. Click Help→ Install new Software... to open the Eclipse update manager

5. Click Add to add a new Sϕnx update site and type the following
into the location of the update site: http://www.cs.cmu.edu/~smitsch/
updates/releases to use the latest tool release.

6. Click Add to add a new Xsemantics update site and type the following
into the location of the update site: http://master.dl.sourceforge.
net/project/xsemantics/updates/releases/1.3

7. If you want to compare proofs

a) Click Add to add a new EMF Compare update site.

b) Type the following into the location of the update site: http://
download.eclipse.org/modeling/emf/compare/updates/releases/

8. If you want to install the simulation features of Sϕnx

a) Click Add to add a new Wolfram Workbench update site. Sϕnx
installation retrieves the Mathematica integration libraries from
this update site. Note: you need a Mathematica license to use the
hybrid program simulation features of Sϕnx. Type the following

3

http://www.eclipse.org
http://www.cs.cmu.edu/~smitsch/updates/releases
http://www.cs.cmu.edu/~smitsch/updates/releases
http://master.dl.sourceforge.net/project/xsemantics/updates/releases/1.3
http://master.dl.sourceforge.net/project/xsemantics/updates/releases/1.3
http://download.eclipse.org/modeling/emf/compare/updates/releases/
http://download.eclipse.org/modeling/emf/compare/updates/releases/


4 installation

into the location of the update site: http://workbench.wolfram.
com/update

b) Click Add to add a new Eclipse Indigo compatibility update site
for Wolfram Workbench and type the following into the location of
the update site: http://download.eclipse.org/releases/indigo

9. Select Sϕnx from the drop-down menu and choose the features to
install

10. Follow the screen instructions to complete the installation

2.2 configuration

This section details the configuration of Sϕnx once it is installed. Sϕnx
uses KeYmaera as hybrid verification tool.

2.2.1 Install and Configure KeYmaera

1. Follow the instructions on the KeYmaera1 web site to download and
install KeYmaera locally. Note, that Sϕnx does not yet work with the
Webstart version!

2. Click Eclipse→ Preferences... and select KeYmaera Local Installation from
the tree view.

3. Click Browse... on the KeYmaera Installation Directory line and select
your local KeYmaera installation directory. Sϕnx will try to figure out
the library dependencies automatically.Figure 2.1: Specify

the locations of
KeYmaera jar

libraries to enable
KeYmaera startup

from Sϕnx

4. If necessary, supply the remaining jar libraries manually using the
respective Browse... buttons.

2.2.2 Configure the Editors

Click Eclipse→ Preferences... to open the Eclipse preferences dialog.

1. Select DifferentialDynamicLogic→ Compiler to activate/deactivate LATEX
code generation and configure output directory and further code gen-
eration settings.

1 http://symbolaris.com/info/KeYmaera.html#download

http://workbench.wolfram.com/update
http://workbench.wolfram.com/update
http://download.eclipse.org/releases/indigo
http://symbolaris.com/info/KeYmaera.html#download


2.2 configuration 5

2. Select DifferentialDynamicLogic → Syntax Coloring to change the color-
ing of terminal symbols, comments, and other syntactical elements of
dL.

3. Select DifferentialDynamicLogic→ Templates to change the existing tem-
plates or add new ones (see Sect. 2.2.5 for details).

4. Select DifferentialDynamicLogic → Refactoring to change the default
refactoring settings.

5. Select Papyrus→ Embedded Editors to set the Sϕnx-included dL editors
as default popup editors for the uml elements Constraint, OpaqueAction,
and ControlFlow. Figure 2.2: Set the

dL editors of Sϕnx
as embedded popup
editors for Papyrus
uml models

2.2.3 Configure Mathematica and Hybrid Program Simulation

1. Select Sϕnx→Mathematica Setup to let Sϕnx access your local Mathe-
matica installation.

• On MacOS, a typical Mathematica link is similar to "/Applications/

Mathematica.app/Contents/MacOS/MathKernel" -mathlink (includ-
ing the quotation marks).

• On Unix/Linux, use math -mathlink.

• On Windows, use a link similar to "c:\program files\wolfram research\

mathematica\9.0\mathkernel.exe" (including the quotation marks).

For debugging purposes, Sϕnx logs Mathematica output to the console
if activated.

2. Select Sϕnx→ Hybrid Program Simulation Preferences to configure how
hybrid program simulation handles nondeterministic choice, nondeter-
ministic repetition and nondeterministic assignment when simulating
your models. Note, that in the current version Sϕnx makes those choices
in a randomized fashion, which means that you may have to simulate
multiple times to develop an intuition about possible execution behav-
ior of your program.



6 installation

Figure 2.3: Set the
number of loop
unrollings, the

maximum time spent
per loop execution,

and bounds for
random number

generation.

2.2.4 Show Additional Views

Click Window→ Show View→ Other..., then select the following views.

• Select General→ Properties

• Select Papyrus→Model Explorer

• Select Sϕnx→ Hybrid Simulation

2.2.5 Add Modeling Templates



3 T E X T UA L M O D E L I N G

Abstract. This chapter introduces the textual modeling features of Sϕnx.
These include project creation wizard, loading dL models to KeYmaera,
model refactoring, syntax checking, code completion, outline and quick
outline, as well as code folding.

Contents
3.1 Create a new Project . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Refactor your Model . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Further Editor Features . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 create a new project
1. Click File→New→Other...

2. Select Differential Dynamic Logic Project and click Next Figure 3.1: Create a
new dL project using
the new project
wizard

3. Enter the name of your new project and click Finish

The project creation wizard creates a new project with a sample .key-file
that shows the principal structure of a theorem in dL, including a hybrid
program. Details on dL can be found on the KeYmaera web site1, including
tutorials and cheat sheets.

Below, we give a of a bouncing ball.

Listing 3.1: Hybrid model of the bouncing ball example in dL

1 http://symbolaris.com/info/KeYmaera.html#download

7

http://symbolaris.com/info/KeYmaera.html#download


8 textual modeling

1 /** Hybrid model of a bouncing ball */

2 \functions {

3 R c; /* damping coefficient */

4 R g; /* gravity */

5 R H; /* initial height */

6 }

7 \programVariables {

8 /* state variable declarations */

9 R h, v, t;

10 }

11 \problem {

12 /* initial state characterization */

13 g>0 & h>=0 & t>=0 & 0<=c & c<1 & v^2 <= 2*g*(H-h) & H>=0

14 ->

15 \[ /* system dynamics */

16 (

17 {h’=v, v’=-g, t’=1, h>=0}; /* falling/jumping */

18 if (t>0 & h=0) then /* if on ground */

19 v := -c*v; /* bounce back */

20 t := 0

21 fi

22 )* /* repeat transitions */

23 \] (0<=h & h<=H) /* safety/postcondition*/

24 }

3.2 refactor your model
Sϕnx has preliminary model refactoring support in the form of variable
renaming. Proofs are not yet adapted automatically.

1. Right-click a variable, select Refactor→Rename...

3.3 further editor features
• Double-click any tab to make it full-screen.

• Open a searchable quick-outline of your textual model from the context
menu of a dL textual modelFigure 3.2: Open the

quick outline using
Ctrl-O (Windows,
Unix) or Cmd-O

(Mac)

• Sϕnx checks the syntax of hybrid programs for correctness and indi-
cates syntax errors with an light bulb/exclamation mark icon in the
left editor bound and a red wiggly line.



3.3 further editor features 9

Figure 3.3: Syntax
and cross references
are checked on-the-fly

• Code completion. Figure 3.4: Get cross
references to variables
and other code
completion help by
pressing Ctrl-Space

• Keep overview with Code Folding using +/- in vertical editor bar. Figure 3.5: Use code
folding

• Quick peek folded content as tooltip + in vertical editor bar. Figure 3.6: Hover the
mouse over a folded
code snippet to take a
quick peek

• Whenever you save a dL textual model, Sϕnx generates a LATEX repre-
sentation of the model.





4 G R A P H I C A L M O D E L I N G

Abstract. This chapter introduces the graphical modeling features of
Sϕnx. Sϕnx uses uml class diagrams to model the structure of a hybrid
system, and uml activity diagrams to model their behavior. Graphical
models can be transformed into textual dL models and then loaded to
KeYmaera.

Contents
4.1 Create a new Graphical Model . . . . . . . . . . . . . . . . . . . . 11
4.2 Model System Structure . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Model System Dynamics . . . . . . . . . . . . . . . . . . . . . . . 13
4.4 Generate Textual Model . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1 create a new graphical model
1. Click File→ New→ Other...

2. Select Papyrus Model and click Next

3. Enter the name of your new model and click Next

4. Select uml and click Next

5. Select uml Activity Diagram (system dynamics) and uml Class Diagram
(system structure), then check A UML model with basic primitive types. Figure 4.1: Create a

new graphical model
of a hybrid system
describing structure
and behavior

11



12 graphical modeling

6. Click Finish

The editor pane now shows the graphical editor. Switch to the class di-
agram (structure) and follow the steps below to apply the uml profile for
dL.

1. In the Properties View, select the tab Profile and click the button Apply
Registered Profile.

2. Select Differential Dynamic Logic Structure and Differential Dynamic Logic
Behavior and click OK.

3. Check dldynamic and dlstatic and click OK.

4.2 model system structure
In this section, we discuss how to model the system structure with classes
and properties. We will use the stereotypes of the dL uml profile to mark
important parts of the model for code generation and subsequent verification.

1. From the palette, select Class and click on the editing area. Alternatively,
wait for the popup palette to appear in an empty part of the editing
area. We create two classes: one represents the bouncing ball, the other
one the world.Figure 4.2: Create

new classes by
dragging Class

elements from the
palette to the editing

area.

2. On the properties view, select the profile element. Use System to flag
the main system class, and Object to flag other agents in the system.

3. From the palette, select Property and click on a class to add a new prop-
erty. We add three properties to the class World: a clock t, a damping
coefficient c, and gravity g.

4. On the properties view, you can apply stereotypes Constant or Variable
to these properties to flag them as either being constant or variable.
By default, all properties are variable. Alternatively, you can use the
uml tab to set a property read only, or use the popup editor to add
{readOnly}



4.3 model system dynamics 13

Figure 4.3: Flag
properties as constant
or variable using
stereotypes, setting
readonly to
true/false on the uml

tab of the properties
view, or apply
{readOnly} with the
popup editor

5. Model associations between your classes, as appropriate. Currently,
these are for documentation purposes only and do not influence code
generation.

6. Select Constraint from the palette to define conditions that must always
be true. In the bouncing ball example, we add constraints on gravity
(must be strictly positive), the damping coefficient (must be positive
and less than 1), time (must be positive), and the initial height of
the ball (must be positive). The popup editor for constraints in dL
supports syntax highlighting and code completion. You can confirm
the constraint by pressing Ctrl-Enter, or leave the popup editor with
Esc. Figure 4.4: Define

constraints using the
dL popup editor

4.3 model system dynamics
Now that we defined the structure of our system, we can define its dis-
crete and continuous dynamics. Since system dynamics can become rather
complicated, we will model hierarchically. We start with the overall system
dynamics and will supply details in sub-diagrams. As cautious modelers, we
first define a safety condition before we model any behavior.

1. Define the safety condition: select the tab uml of the properties view
and scroll to the precondition and postcondition section. Click the
button + on the postcondition to open the postcondition window and
add a new Constraint.



14 graphical modeling

Figure 4.5: Add a
new constraint as

postcondition for a
uml activity

2. On the constraint definition window, name the constraint, and option-
ally select the constrained element. In our example of the bouncing
ball, the safety condition will demand that the ball’s height is positive
but no larger than its starting height, thus we constrain h.Figure 4.6: Select the

constrained element

3. Exit the constrained element selection, the constraint definition win-
dow, and the postcondition window. A new postcondition (without
specification) has been added to the activity.

4. Click on the postcondition to open the dL popup editor. Enter the
postcondition and confirm with Ctrl-Enter.

As an alternative to the popup editor, constraint specifications can be
added from the constraint editor (continue from step 2 above).

1. Add a constraint specification using the button + next to the specifica-
tion text field. Specifications are always of kind OpaqueExpression.Figure 4.7: Specify

the constraint using a
new

OpaqueExpression

2. On the constraint specification window, name the new specification.
Click the button + next to language to add dL. Type dL into the text



4.3 model system dynamics 15

field on the left side and add it by clicking the right-pointing arrow. Figure 4.8: Enter dL
as constraint
specification language

3. Click into the body field and provide the constraint specification in
dL. In our example, we want the ball’s height to be between 0 and its
initial height H. Click somewhere outside the body field (e. g., reselect
the name field) to adopt the new body specification. Figure 4.9: Specify

the constraint body in
dL and confirm your
definition by clicking
outside the text field

4. Exit the constraint specification window, the constraint window, and
the postcondition window by clicking OK on each.

Next, we define the overall system dynamics. These consist of the con-
tinuous dynamics (the ball falls and jumps) and discrete dynamics (when
it hits the ground, the ball bounces back). We want the ball fall and jump
arbitrariliy often. Thus, discrete and continuous dynamics are repeated non-
deterministically many times in a loop.

1. Add an Initial Node from the palette. This node represents the start of
our system.

2. Add a Merge Node from the palette. This node represents the loop start.

3. Connect the initial node and the merge node with a Control Flow. The
default condition for such a flow is true, which means that it is executed
unconditionally. The condition can be hidden using Filter → Manage
Connector Labels from the context menu of the control flow.

4. Add an OpaqueAction from the palette and connect the merge node
with a control flow to the opaque action. This action represents the
continuous dynamics of our system. On the properties view, choose
a descriptive name for the action (e. g., “Fall and Jump”) and add
the stereotype Dynamics on the properties view. The opaque action



16 graphical modeling

represents the continuous dynamics in our system. Click the “Fall and
Jump” label to open the dL popup editor and define the dynamics
using a differential-algebraic equation.Figure 4.10: Define

the continuous
dynamics of a hybrid

system as
differential-algebraic

equation in the dL
popup editor of an

OpaqueAction with
stereotype Dynamics

5. Add a Behavior Call Action from the palette. Although the discrete
dynamics of the bouncing ball example is rather simple, we want to
have a separate activity diagram to demonstrate decomposition. We
create a new behavior named “DiscreteDynamics”.Figure 4.11: Use Call

Behavior Actions to
decompose the

dynamics and create
new Behavior nodes

6. Add a Decision Node from the palette. This node represents the end of
the loop body.

7. Connect the decision node with the merge node using a Control Flow
as back edge. Select the stereotype Nondeterministic repetition for this
control flow. Then specify a loop invariant for the stereotype.

8. Add an Activity Final Node and connect the decision node with a control
flow. This finalizes the overall system dynamics as follows.



4.3 model system dynamics 17

Figure 4.12:
Overview of bouncing
ball dynamics

In the next step, we will specify the discrete dynamics of the system. The
discrete dynamics of the bouncing ball is rather simple: if the ball hits the
ground, it bounces back (i. e., the discrete dynamics inverts the ball’s velocity
and reduces it according to the damping factor), else it just keeps falling or
jumping (i. e., the discrete dynamics does nothing).

1. In the Model Editor view, add a New→ Activity Diagram to the Discret-
eDynamics behavior created above using the context menu. Figure 4.13: Use the

context menu to add
a new activity
diagram to a uml

behavior

2. Add an Initial Node to denote the start of the discrete dynamics.

3. Connect the initial node to a decision node. This is the start of the
if-condition.

4. Add an Opaque Action to set the new velocity, and another one to reset
time. Tag both with the stereotype Deterministic Assignment to define
that they will set the value of variables in a deterministic manner. Click
the label of the action and set the values of velocity (v := −c · v) and
time (t := 0).



18 graphical modeling

5. Add a Merge Node, an Activity Final Node, and set the control flows to
get the final dynamics as below.Figure 4.14: The

discrete dynamics of
the bouncing ball

example

6. To set up navigation from the dynamics overview to the detailed
discrete dynamics, switch back to the tab Dynamics.

7. Double-click the behavior call action bounceback:DiscreteDynamics to
open the hyperlink configuration window.

8. Click the button + on the tab View Hyperlinks to open the Edit Hyperlink
Window.

9. Click the button Search and select the DiscreteDynamics activity dia-
gram.Figure 4.15: Create a

new hyperlink

10. Switch to the tab Default Hyperlinks, select the DiscreteDynamics hyper-
link and press the right-arrow button to add it as default.Figure 4.16: Set a

hyperlink as default
action for double-click
on a diagram element



4.4 generate textual model 19

4.4 generate textual model
1. Open the context menu of bouncingball.uml in the package explorer.

2. Click Acceleo Model to Text→ Generate DifferentialDynamicLogic Figure 4.17: Click
Acceleo Model to
Text → Generate
DifferentialDynam-
icLogic to generate
a textual dL model
from a graphical
uml model





5 H Y B R I D SYST E M A N A LYS I S

Abstract. This chapter introduces the analysis features of Sϕnx: Cor-
rectness properties about hybrid programs can be formally verified in
KeYmaera. In order to develop an intuition about the actual behavior of
a hybrid program, Sϕnx additionally simulates hybrid programs using
Mathematica and displays the traces of variable valuations.

Contents
5.1 Plot Simulated Traces of Hybrid Programs . . . . . . . . . . . . . 21
5.2 Verify a Model with KeYmaera . . . . . . . . . . . . . . . . . . . . 22

5.1 plot simulated traces of hybrid programs
Sϕnx uses Mathematica to create simulated traces of hybrid programs. The
simulation traces are displayed in the simulation view, which can be activated
by clicking Window → Show View → Other... → Sϕnx → Hybrid Simulation.
You can create a simulation run for the model in the active editor by pressing
the gears icon in the simulation view. The context menu on the simulation
plot lets you select the displayed variables, scale and zoom the plot, save a
bitmap image or print the simulation trace.

Figure 5.1: Inspect simulated traces of hybrid programs

21



22 hybrid system analysis

5.2 verify a model with keymaera
Sϕnx uses KeYmaera to prove correctness properties about models in dL.
You can start KeYmaera from the context menu of a .key or .key.proof file in
the package explorer, or from the context menu of a textual editor.

Figure 5.2: Run KeYmaera from the context menu of any .key or .proof file

Sϕnx will start KeYmaera as external application and show KeYmaera’s
information output in a console view. If absolutely necessary, you can stop
KeYmaera from the console using the red stop button (not encouraged). Note,
that this will force-quit KeYmaera without saving your work.

Figure 5.3: The KeYmaera console.



6 P R O O F C O L L A B O R AT I O N

Abstract. This chapter introduces the proof collaboration features of
Sϕnx. Sϕnx uses Eclipse for model and proof versioning, and is thus
compatible with common versioning systems such as svn and git.

Contents
6.1 Share and Collaborate on Textual Models . . . . . . . . . . . . . . 23
6.2 Share and Collaborate on a Proof . . . . . . . . . . . . . . . . . . 23
6.3 Export Open Goals of Partial Proofs . . . . . . . . . . . . . . . . . 24
6.4 Import Geometric Relevance Filtering Results . . . . . . . . . . . 25

6.1 share and collaborate on textual mod-
els

Textual models in dL, just as ordinary source code, can be versioned in a
source code repository. Differences between versions (updates, deletions, and
conflicts) can be compared and resolved using the standard Eclipse tools.

Figure 6.1: Comparison of textual models

6.2 share and collaborate on a proof
Just as for textual models, Sϕnx supports any source code repository con-
nected to Eclipse to version proofs. You can compare changes between your

23



24 proof collaboration

local version of a proof and the latest version in the source code repository
as follows.

1. Open the context menu of a proof and click Compare with→ Latest from
Repository

2. Click Complete resource set(s)

3. Browse the proof comparisonFigure 6.2: Proof
comparison

4. Use the buttons in the structural differences view header to copy
changes between versions

6.3 export open goals of partial proofs
1. Open the context menu of a proof and click Export...

2. Select Sphinx→ Export Arithmetic Goal and click NextFigure 6.3: Export an
arithmetic goal via
the export wizard

3. Search for and select the open goal to export, click NextFigure 6.4: Search an
open goal



6.4 import geometric relevance filtering results 25

4. Select or create a new file to export, click Finish. Figure 6.5: Select or
create a new file to
export

6.4 import geometric relevance filtering re-
sults

1. Open the context menu of a proof and click Import...

2. Select Sphinx→ Geometric Relevance Filtering Result

3. Select a file from the file system or from the Eclipse workspace

4. Select the hiding suggestions to import into the proof (usually all) and
click Next.



26 proof collaboration

Figure 6.6: Select
hiding suggestions

5. Select the applicable goals (usually all) and click Finish.Figure 6.7: Select
applicable goals

Commit the changes to the source code repository or load the partial proof
in KeYmaera to continue proving.



B I B L I O G R A P H Y

[1] Mitsch, S., Ghorbal, K., and Platzer, A. On provably safe obstacle
avoidance for autonomous robotic ground vehicles. In Robotics: Science
and Systems (2013).

[2] Mitsch, S., Loos, S. M., and Platzer, A. Towards formal verification of
freeway traffic control. In ICCPS (2012), IEEE, pp. 171–180.

[3] Mitsch, S., Passmore, G. O., and Platzer, A. A vision of collaborative
verification-driven engineering of hybrid systems. In Do-Form (2013),
M. Kerber, C. Lange, and C. Rowat, Eds., AISB, pp. 8–17.

27






	Titlepage
	Contents
	List of Figures

	1 Overview
	1.1 General Information

	2 Installation
	2.1 Installation from Eclipse Update Site
	2.2 Configuration
	2.2.1 Install and Configure KeYmaera
	2.2.2 Configure the Editors
	2.2.3 Configure Mathematica and Hybrid Program Simulation
	2.2.4 Show Additional Views
	2.2.5 Add Modeling Templates


	3 Textual Modeling
	3.1 Create a new Project
	3.2 Refactor your Model
	3.3 Further Editor Features

	4 Graphical Modeling
	4.1 Create a new Graphical Model
	4.2 Model System Structure
	4.3 Model System Dynamics
	4.4 Generate Textual Model

	5 Hybrid System Analysis
	5.1 Plot Simulated Traces of Hybrid Programs
	5.2 Verify a Model with KeYmaera

	6 Proof Collaboration
	6.1 Share and Collaborate on Textual Models
	6.2 Share and Collaborate on a Proof
	6.3 Export Open Goals of Partial Proofs
	6.4 Import Geometric Relevance Filtering Results

	Bibliography
	Index

