STEFAN MITSCH

MODELING AND ANALYZING HYBRID
SYSTEMS WITH SPHINX

A USER MANUAL

Computer Science Department

Carnegie Mellon University / Johannes Kepler University
http://www.cs.cmu.edu/~smitsch

December 2013

Stefan Mitsch: Modeling and Analyzing Hybrid Systems with Sphinx, A User
Manual, © December 2013.

WEBSITE:
http://www.cs.cmu.edu/~smitsch

E-MAIL:
smitsch@cs.cmu.edu

http://www.cs.cmu.edu/~smitsch
mailto:smitsch@cs.cmu.edu

CONTENTS

1 OVERVIEW

1.1 General Information

2 INSTALLATION

2.1 Installation from Eclipse Update Site
2.2 Configuration
2.2.1 Install and Configure KeYmaera
2.2.2 Configure the Editors
2.2.3 Configure Mathematica and Hybrid Program Simulation
2.2.4 Show Additional Views
2.2.5 Add Modeling Templates

3 TEXTUAL MODELING

3.1 Create anew Project
3.2 Refactor your Model
3.3 Further Editor Features

4 GRAPHICAL MODELING

4.1 Create a new Graphical Model
4.2 Model System Structure
4.3 Model System Dynamics
4.4 Generate Textual Model

5 HYBRID SYSTEM ANALYSIS

5.1 Plot Simulated Traces of Hybrid Programs . .
5.2 Verify a Model with KeYmaera

6 PROOF COLLABORATION

6.1 Share and Collaborate on Textual Models . . .
6.2 Share and Collaborate on a Proof
6.3 Export Open Goals of Partial Proofs

6.4 Import Geometric Relevance Filtering Results

BIBLIOGRAPHY

0O OV~ B WW R R

NNNNDNDNNNRRFRRRRRA
U~ W WWINRrR R OWNRR

N
N

il

LIST OF FIGURES

Figure 1.1
Figure 2.1
Figure 2.2
Figure 2.3
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4.15
Figure 4.16
Figure 4.17
Figure 5.1
Figure 5.2

Figure 5.3
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

Screenshot of the Spnx toolkit.
KeYmaera configuration
Configure dC popup editors
Configure hybrid program simulation
Create anew dl project
Open the quick outline
Syntax checking
Code completion
Codefolding
Quick peek into folded code
Createanew uMLmodel
Createanewclass.
Flag properties as constant or variable
Define constraints using the d{ popup editor
Add anew constraint
Select the constrained element
Specify a constraint as OpaqueExpression
Enter d{ as constraint specification language
Use d£ to specify a constraintbody
Use dC to specify the continuous dynamics
Hierarchically decompose behavior.
Overview of bouncing ball dynamics.
Add a new activity diagram
Discrete dynamics of the bouncing ball example . . .
Create anew hyperlink
Set a default hyperlink
Transform a uML model into a textual d{ model . . .
Inspect simulated traces of hybrid programs
Run KeYmaera from the context menu of any .key or
prooffile
The KeYmaeraconsole.
Comparison of textual models
Proof comparison
Export an arithmeticgoal
Searchanopengoal
Exportfile
Select hiding suggestions
Select applicable goals,

= WO WO OV O O\ NU B~ R

OVERVIEW

1.1 GENERAL INFORMATION

his document is a user manual for the Sgnx verification-driven engineer-

ing environment for hybrid systems. Spnx is an extensible verification-
driven engineering toolkit based on the Eclipse platform. It provides textual
and graphical modeling editors to describe the structure, the discrete dy-
namics, and the continuous dynamics of cyber-physical systems. Senx uses
KeYmaera as hybrid verification tool.

) Project Explorer 52 =
3 *stationaryobstacles.di £ 9/ stationaryobstacles.key 23
¥ G mathines I palette > \problem {
> G proofs T vor >m 0
R @&Q & (2%B_roAbs(x.r - X.0) > V_rAZ | 298 r¥AbsCy.r -
> G temp r=0f = Erieo
73 staionaryobstacles » 5 Activity Partton EAr >« 08Br>08ep>0
24 + o Inital node >
ke a oast ense M
o (28 rABS(x_r - X 0> V.22 + K01 4| ., Output Pin Qvor = 0
& umi 218 0"ABS(/r - y_0 V.rA2 + 29T + " 7+ Coast +/
) Expansion .
- - fondererministichssignmens) | » ¥ epers -
’ Cure | & Broadcast signal s
BG EREE oo Acion 2 bSC_r - X-0) > V_rAZ + 2%CA_r 4
vES stationaryobstacles Edges | 298 r*AbsCyr = y_0) > v_rAZ + 2%CAr 4
» %7 <Package Import> UML Primitiv Types RORGEETISIASTD | 1 ControlFlow ey ST
» 5 eSystems SystemDynamics Acc . 7 n '
1 = Exception s
.] Oec hover Handler a 7-Br <= ar & ar <= A1)
«Objects Obstacle EXTErrry O B
» 5 eSystem CollsionAvoidance ,\f Foresarbar<=ad so» Obfoct Flow ar i= -Br)
> & Trajectory . %, tink /% END Controller */
>/ diives P
» "/ collisionAvoidance_robot_1 43 StationaryObstacles | B3 StationaryObstacles 3 Controller 52 7% ResetClock */
> / colisionAvoidance_obtacie_1 e
> (7) RobotConsuraints
- Properties / Model Validation () Console 33 g Hybrid Simulation @ Proof - 6@t 2o 13- = B
s ve forary/Java/javavirtualvy KeYmaera - Prover
Sownen 8 VoD
NEF: sauatsxrpxrd | P Sart]: < [Prone proof | [Revse || || MM IE
[xr, vor, dxr, ariss .
b o ©0 0 Proof closed
et oo ot TN twbridstrategy |y
Ignoring v_r >= 0 Proof Property proved! BB R JE
Tgnoring ¢ >- 0 tatistics: 2
T wnr a2+ [Proof Tree OO B, Absty, = y) > v, %)
groring dx_i = Nodes: 859 2
Tgnoring v.r = @ g = e 07 @, =1
Replacements are: {tx & 2ind loop invariant

Fornula: equals(y_r,y
o st Invariant Initially Valic

Ter, vor, dr, ary | @ B Use Case

[x_r, v_r, dx_r, a_r, [Body Preserves Invariant ;

[K®” Integrated Deductive Software Design: Ready

ok)

Figure 1.1: Screenshot of the S¢nx toolkit

Details on the underlying principles of Spnx can be found in [3]. Spnx
was used in formal verification case studies on road traffic safety [2] and
obstacle avoidance for autonomous robotic ground vehicles [1].

INSTALLATION

Abstract. This chapter introduces the installation procedure of Spnx
and the subsequent configuration steps to setup KeYmaera as hybrid
verification tool.

Contents

2.2.4 Show Additional Views
2.2.5 Add Modeling Templates

2.1 Installation from Eclipse Update Site 3
2.2 Configuration L 4
2.2.1 Install and Configure KeYmaera 4

222 Configure the Editors 4

2.2.3 Configure Mathematica and Hybrid Program Simulation 5

6

6

2.1 INSTALLATION FROM ECLIPSE UPDATE SITE

¢nx comes with an Eclipse update site, which automates installation and
updates. It assumes, that Eclipse Kepler (Modeling Tools) is already
downloaded from http://www.eclipse.org and installed.

1. Start Eclipse

2. Click Help — Install Modeling Components to open the modeling compo-
nent selection wizard

3. Select Xtext and Papyrus and click Finish. Follow the on-screen instruc-
tions to install these modeling components.

4. Click Help — Install new Software... to open the Eclipse update manager

5. Click Add to add a new Senx update site and type the following
into the location of the update site: http://www.cs.cmu.edu/~smitsch/
updates/releases to use the latest tool release.

6. Click Add to add a new Xsemantics update site and type the following
into the location of the update site: http://master.dl.sourceforge.
net/project/xsemantics/updates/releases/1.3

7. 1f you want to compare proofs
a) Click Add to add a new EMF Compare update site.
b) Type the following into the location of the update site: http://
download.eclipse.org/modeling/emf/compare/updates/releases/
8. If you want to install the simulation features of Spnx

a) Click Add to add a new Wolfram Workbench update site. Spnx
installation retrieves the Mathematica integration libraries from
this update site. Note: you need a Mathematica license to use the
hybrid program simulation features of Spnx. Type the following

To check for S nx
updates, click Help
— Check for Updates

http://www.eclipse.org
http://www.cs.cmu.edu/~smitsch/updates/releases
http://www.cs.cmu.edu/~smitsch/updates/releases
http://master.dl.sourceforge.net/project/xsemantics/updates/releases/1.3
http://master.dl.sourceforge.net/project/xsemantics/updates/releases/1.3
http://download.eclipse.org/modeling/emf/compare/updates/releases/
http://download.eclipse.org/modeling/emf/compare/updates/releases/

4 | INSTALLATION

into the location of the update site: http://workbench.wolfram.
com/update

b) Click Add to add a new Eclipse Indigo compatibility update site
for Wolfram Workbench and type the following into the location of
the update site: http://download.eclipse.org/releases/indigo

9. Select Spnx from the drop-down menu and choose the features to
install

10. Follow the screen instructions to complete the installation

2.2 CONFIGURATION

his section details the configuration of Spnx once it is installed. Senx
uses KeYmaera as hybrid verification tool.

2.2.1 Install and Configure KeYmaera

1. Follow the instructions on the KeYmaera® web site to download and
install KeYmaera locally. Note, that Sonx does not yet work with the
Webstart version!

2. Click Eclipse — Preferences... and select KeYmaera Local Installation from
the tree view.

3. Click Browse... on the KeYmaera Installation Directory line and select
your local KeYmaera installation directory. Sonx will try to figure out

Figure 2.1: Specify the library dependencies automatically.
the locations of P

i

K Y 8 00 Preferences
] type filter text KeYmaera Local Installation e v
libraries to enable » General prp——
) gen I Ketmaerasenings
KeYmaera startu »coo Ke¥maera installation directory: |J/Applications /KeYmaera3.1 [Browse...
p > Ecor Tools Disgram
EuF Compare . =
from S Qnx > EMF Facet Orbital Extensions JAR: JApplications /KeYmaera3. 1/key-ext-jars orbital-ext jar rowse...
» Help.
» Install Update Scala Library JAR: 1 Jar [_srowse...
s
» Model Validation Orbital Core JAR: KeYmaera3.1/| Jar | Browse...
> Mylyn KeYmaera JAR: KeYmaera3.1, Jar [Browse...
»oor
» Papyrus Math Plot JAR: KeYmaeras.1/key [srowse...
> Pugein Development
> rod — -
L e e y press Lt jar w—
“Somim
P Differential DynamicLogic Java CCJAR: Ki 3.1/ key-ext-] | Browse...
KeYmaera Local Installati ANTLR JAR: /Applications/KeYmaera3.1/key-ext-jars/antlr-3.4-complete.jar | Browse...
e
» Team RecoderKEY JAR: K 3.1 y
Lot AR opic key-eoa-arsog Al ar
JLink JAR: /Applications [KeYmaera3.1/key-ext-jars/JLink.jar [Browse...
(Restore Defaults | [Apply
®@ Cancel | oK

4. If necessary, supply the remaining JAR libraries manually using the
respective Browse... buttons.
2.2.2 Configure the Editors
Click Eclipse — Preferences... to open the Eclipse preferences dialog.

1. Select DifferentialDynamicLogic — Compiler to activate/deactivate IXTEX
code generation and configure output directory and further code gen-
eration settings.

1 http://symbolaris.com/info/KeYmaera.html#download

http://workbench.wolfram.com/update
http://workbench.wolfram.com/update
http://download.eclipse.org/releases/indigo
http://symbolaris.com/info/KeYmaera.html#download

2.2 CONFIGURATION | 5

2. Select DifferentialDynamicLogic — Syntax Coloring to change the color-
ing of terminal symbols, comments, and other syntactical elements of
dC.

3. Select Differential DynamicLogic — Templates to change the existing tem-
plates or add new ones (see Sect. 2.2.5 for details).

4. Select DifferentialDynamicLogic — Refactoring to change the default
refactoring settings.

5. Select Papyrus — Embedded Editors to set the Spnx-included d£ editors
as default popup editors for the umL elements Constraint, OpaqueAction,

and ControlFlow. Figure 2.2: Set the
dL editors of Snx
Preferences
Embedded Editors dET o as EMbedded popup
E editors for Papyrus
P EMF Facet Elements to edit
P Help org.eclipse.uml2.um.Transition UML models
P install/Update org.eclipse.uml2.uml.State
FJava e org.eclipse.uml2.uml.Port
¥ Model Validation org.eclipse.uml2.uml.Property
MoDisco org.eclipse.papyrus.uml.profile.structure AppliedStereotypeProperty
> Mylyn org.eclipse.uml2.uml.Constraint
rocL org.eclipse.um|2.uml.OpagueAction
VPapyrus org.eclipse.uml2.uml.CollaborationUse
Connection Tools org.eclipse.uml2.uml.ControlFlow
) Diagrams org.eclipse.uml2.uml.Parameter
Drag and drop org.eclipse.uml2.uml.ConnectionPointReference
»Embedded Editors
Model loading
Navigation Associated editor
Papyrus Model Explorer Essential OCL constraint editor [Default |
Pathmaps JAVA constraint 4
Printing :
Property view customizat Simple Direct Editor
Property views
@ _ Cancel | Lok

2.2.3 Configure Mathematica and Hybrid Program Simulation

1. Select Sonx — Mathematica Setup to let Sonx access your local Mathe-
matica installation.

e On MacOS, a typical Mathematica link is similar to "/Applications/
Mathematica.app/Contents/Mac0S/MathKernel" -mathlink (includ-
ing the quotation marks).

e On Unix/Linux, use math -mathlink.

e On Windows, use a link similar to "c:\program files\wolfram research\
mathematica\9.0\mathkernel.exe" (including the quotation marks).

For debugging purposes, Spnx logs Mathematica output to the console
if activated.

2. Select Sonx — Hybrid Program Simulation Preferences to configure how
hybrid program simulation handles nondeterministic choice, nondeter-
ministic repetition and nondeterministic assignment when simulating
your models. Note, that in the current version Spnx makes those choices
in a randomized fashion, which means that you may have to simulate
multiple times to develop an intuition about possible execution behav-
ior of your program.

6 | INSTALLATION

Figure 2.3: Set the

800 Preferences
number of loop , —
type filter text Hybrid Program Simulation Preferences G
/- » Kun/UDebu
MT’erlll?’lgS, the T e Edit Hybrid Program Simulation Settings.
;.). ¥Sphinx Unroll loop 10
maximum time spent » DifferentialDynamicLogic o
. Maximum time per loop -~ 6
. DIProofLink
per lOOp executlon, Hybrid Program Simulation Preferences Minimum random numbers for simulation | -10.0
»Key
and bounds fOT Koy maera Local Installation Maximurm random numbers for simulation | 10.0
Mathematica Setup
;/gndom numbgr ::mol @ Print Mathematica input to console
erm
; | Restore Defaults | Appl
generation.) Team Restore Delavlts) L_Aeely
® Cancel 0K]

2.2.4 Show Additional Views
Click Window — Show View — Other..., then select the following views.

o Select General — Properties
e Select Papyrus — Model Explorer

o Select Sonx — Hybrid Simulation

2.2.5 Add Modeling Templates

=

TEXTUAL MODELING

Abstract. This chapter introduces the textual modeling features of Senx.
These include project creation wizard, loading d{ models to KeYmaera,
model refactoring, syntax checking, code completion, outline and quick
outline, as well as code folding.

Contents
3.1 Createanew Project 7
3.2 Refactoryour Model 8
3.3 Further Editor Features 8

3.1

CREATE A NEW PROJECT

1. Click File —New —Other...

2. Select Differential Dynamic Logic Project and click Next

8 00

New

Figure 3.1: Create a
new d& project using
the new project

Select a wizard

wizard

Wizards:

type filter text

P (=Git
P (= Java
P (= Java Emitter Templates
P (= MoDisco
W (= Papyrus
P = Plug-in Development
¥ = Sphinx
K Differential Dynamic Logic File

P (=5VN

P (= Tasks

P (= User Assistance
P (= Other

P (= Examples

L Differential Dynamic Logic Project

a3
@ < Back [Next> | [cancel |

3. Enter the name of your new project and click Finish

Finish

The project creation wizard creates a new project with a sample .key-file
that shows the principal structure of a theorem in d(, including a hybrid
program. Details on dC can be found on the KeYmaera web site’, including
tutorials and cheat sheets.

Below, we give a of a bouncing ball.

Listing 3.1: Hybrid model of the bouncing ball example in d{

http://symbolaris.com/info/KeYmaera.html#download

http://symbolaris.com/info/KeYmaera.html#download

8 | TEXTUAL MODELING

1 /*x Hybrid model of a bouncing ball x/

2 \functions {

3 R c; /* damping coefficient x/

4 R g; /* gravity =/

5 R H; /* initial height */

6 }

7 \programVariables {

8 /* state variable declarations x/

9 R h, v, t;

10 }

11 \problem {

12 /* initial state characterization */

13 g>0 & h>=0 & t>=0 & O<=c & c<1 & v*2 <= 2xg*(H-h) & H>=0
14 ->

15 \ [/* system dynamics x/

16 (

17 {h'=v, v'=-g, t'=1l, h>=0}; /* falling/jumping */

18 if (t>0 & h=0) then /* if on ground =/

19 V i= -C*V; /* bounce back */

20 t =0

21 fi

22) * /* repeat transitions =/
23 \] (06<=h & h<=H) /* safety/postconditionx/
24 }

3.2 REFACTOR YOUR MODEL
Senx has preliminary model refactoring support in the form of variable
renaming. Proofs are not yet adapted automatically.

1. Right-click a variable, select Refactor —Rename...

3.3 FURTHER EDITOR FEATURES

e Double-click any tab to make it full-screen.

e Open a searchable quick-outline of your textual model from the context

Figure 3.2: Open the menu of a d{ textual model

quick outline using o ATV

Ctrl-O (Windows, /* stagte variahle declarations */
Unix) or Cmd-O ; R h, v, t;v -
YIi=h ingball
(Mac) - \problem { ouncingbal
/* inity
= g=8 & h=z
-
S N
= C
= {h'=y
& if ¢ ¥ = dL Modality
- v ¥ i= Box Modality [a]
fi d ¥ = Statimpl
3 | ¥ i=Starimpl
W I=StatReentrylmpl
\1 (B<=h Eerte
Press 'Esc’ to exit the quick outline.

e Senx checks the syntax of hybrid programs for correctness and indi-
cates syntax errors with an light bulb/exclamation mark icon in the
left editor bound and a red wiggly line.

3.3 FURTHER EDITOR FEATURES | 9

/* initial state characterization */

o g0 & h>=0 & t>=0 & Be=c & c<l & vA2 <= 2%g*(H-h) & H>=0

e Code completion.

“problem {
/* initial state characterization */

-=

o Keep overview with Code Folding using +/- in vertical editor bar.

e Quick peek folded content as tooltip + in vertical editor bar.

g+ & hx=8 & t>=0 & B<=c & c<l & wA2 <= 2*%g*(H-h) & H==0

Figure 3.3: Syntax
and cross references
are checked on-the-fly

Figure 3.4: Get cross
references to variables
and other code
completion help by
pressing Ctrl-Space

namics */

umping */
jund */
ck */

ansitions */
stcondition*/

K#¥ bouncingball.key &3

o e

Figure 3.5: Use code
folding

K@ bouncingball.key 53

o e

* Hybrid model of a bouncing ball.

*/

@ \functions {[]
@ \programVariables {[]
@ \problem {[]

* Hybrid model of a bouncing ball.

*/

@\functions {[]

@ \programVarihbles {[]
@ problem {

/* initial state characterization */

g=? & h>=0 & t>=0 & B<=c & c<l & wA2 <= 2%g*(H-h) & H>=0

-

A

C

*

Th'=v, v'=-g, t'=1,
if (t=0 & h=0) then
v i= -c*v;
t =@
fi

M) (B<=h & h<=H)

i*

h==8}; /*
S
Y

i*
*

Figure 3.6: Hover the
mouse over a folded
code snippet to take a
quick peek

system dynamics */

falling/jumping */
if on ground */
bounce back */

repeat transitions */
safety/postcondition*/

e Whenever you save a d{ textual model, Spnx generates a IXTEX repre-
sentation of the model.

GRAPHICAL MODELING

Abstract. This chapter introduces the graphical modeling features of
Senx. Spnx uses UML class diagrams to model the structure of a hybrid
system, and UML activity diagrams to model their behavior. Graphical
models can be transformed into textual d{ models and then loaded to

KeYmaera.

Contents

4.1 Create a new Graphical Model
4.2 Model System Structure
4.3 Model System Dynamics
4.4 Generate Textual Model

CREATE A NEW GRAPHICAL MODEL

. Click File — New — Other...

Select Papyrus Model and click Next
Enter the name of your new model and click Next

Select uML and click Next

Select umL Activity Diagram (system dynamics) and uML Class Diagram
(system structure), then check A UML model with basic primitive types.

800 New Papyrus Model

Initialization information

Select name and kind of the diagram

Diagram Name:

BouncingBall

Select a Diagram Kind:

@ £z UML Activity Diagram

@J EE UML Class Diagram

O E UML Communication Diagram

O aUML Component Diagram

O UML Composite Structure Diagram
O !D UML Deployment Diagram

[_) Bg, UML Package Diagram

|- 'H' UML Sequence Diagram

O T.ﬂ UML StateMachine Diagram

("] $& UML UseCase Diagram

You can load a template:

[A UML model with basic primitive types (ModelWithBasicTypes)

|| Remember current selection

‘/'?) < Back | Next > | Cancel

Finish

1"

Figure 4.1: Create a
new graphical model
of a hybrid system
describing structure
and behavior

12 | GRAPHICAL MODELING

6. Click Finish

The editor pane now shows the graphical editor. Switch to the class di-
agram (structure) and follow the steps below to apply the umL profile for
dC.

1. In the Properties View, select the tab Profile and click the button Apply
Registered Profile.

2. Select Differential Dynamic Logic Structure and Differential Dynamic Logic
Behavior and click OK.

3. Check dldynamic and dlstatic and click OK.

4.2 MODEL SYSTEM STRUCTURE

In this section, we discuss how to model the system structure with classes
and properties. We will use the stereotypes of the d{ umL profile to mark
important parts of the model for code generation and subsequent verification.

1. From the palette, select Class and click on the editing area. Alternatively,
wait for the popup palette to appear in an empty part of the editing
area. We create two classes: one represents the bouncing ball, the other

Figure 4.2: Create one the world.

new classes by

dragging Class SRR TR LY 1958 (TR s i
elements from the (=] e — |) SO 7 S

Package Explor 2 = O 72 boundingball.di 52

palette to the editing mgle ~
area.

$3 Oynamics | B Structure 53

2. On the properties view, select the profile element. Use System to flag
the main system class, and Object to flag other agents in the system.

3. From the palette, select Property and click on a class to add a new prop-
erty. We add three properties to the class World: a clock t, a damping
coefficient ¢, and gravity g.

4. On the properties view, you can apply stereotypes Constant or Variable
to these properties to flag them as either being constant or variable.
By default, all properties are variable. Alternatively, you can use the
UML tab to set a property read only, or use the popup editor to add
{readOnly}

4.3 MODEL SYSTEM DYNAMICS |

wsystems

World + h: Real [1]

|+ ¢ - PrimitiveTypes::Real {readOnly}

£3 Dynamics | Bg Structure 53

Problems Javadoc Declaration Console E Properties 32
Ec
| N .
e | Applied stereotypes:
Profile > . Constant (from dlstatic)
Appearance |
Advanced

5. Model associations between your classes, as appropriate. Currently,

these are for documentation purposes only and do not influence code
generation.

. Select Constraint from the palette to define conditions that must always
be true. In the bouncing ball example, we add constraints on gravity
(must be strictly positive), the damping coefficient (must be positive
and less than 1), time (must be positive), and the initial height of
the ball (must be positive). The popup editor for constraints in d&
supports syntax highlighting and code completion. You can confirm
the constraint by pressing Ctrl-Enter, or leave the popup editor with
Esc.

asystemn «objects
o) {7} Constraint

=] DataType
BallConstraints 1)
_|tn>=op

“«constant> + c: Real (1]
+ 1t Real (1
«constants + g: Real [1]

+ h: Real [1]
+v: Real [1]

+ H Real [1] %4 DurationObse...

[Eauperation

4, InterfaceReali,

%, Link

" Packagelmport
=2 packygeerge

“ Yo g

D<g&0c=cRc<cla0e=t
(=

£3 Dynamics | B structure %

Problems @ Javadoc [, Declaration El

{2} WorldConstraints

Name WorldC

umL
Profile

Visibility public P i}

FE o<go<mce<l0<=t [&[7][

Constrained element o) (&) (&) (%] [2

Appearance

Context <Undefined>

Specification
Advanced

4.3 MODEL SYSTEM DYNAMICS

Now that we defined the structure of our system, we can define its dis-
crete and continuous dynamics. Since system dynamics can become rather
complicated, we will model hierarchically. We start with the overall system
dynamics and will supply details in sub-diagrams. As cautious modelers, we
first define a safety condition before we model any behavior.

1. Define the safety condition: select the tab UML of the properties view

and scroll to the precondition and postcondition section. Click the
button + on the postcondition to open the postcondition window and
add a new Constraint.

13

Figure 4.3: Flag
properties as constant
or variable using
stereotypes, setting
readonly to
true/false on the UML
tab of the properties
view, or apply
{readOnly} with the
popup editor

Figure 4.4: Define
constraints using the
dL popup editor

14

Figure 4.5: Add a
new constraint as
postcondition for a
UML activity

Figure 4.6: Select the
constrained element

Figure 4.7: Specify
the constraint using a
new
OpaqueExpression

GRAPHICAL MODELING

800 Postcondition

{ type filter text)

3

[

2] 5] [¢]

DurationConstraint
InteractionConstraint
IntervalConstraint
TimeConstraint

2. On the constraint definition window, name the constraint, and option-
ally select the constrained element. In our example of the bouncing
ball, the safety condition will demand that the ball’s height is positive
but no larger than its starting height, thus we constrain h.

8. .06 Constrained element
type filter text Egh
¥ Ea Model [e] (%)
» 5, <Package Import> UML Primitiv R
g&; «Systems SystemDynamics | = ‘ ‘ m ‘
v & eal — —
¥ 1, ownedAttribute (3) = —
E (=) (#]
B v
PELH =
(&)
»] «System» World
e

3. Exit the constrained element selection, the constraint definition win-
dow, and the postcondition window. A new postcondition (without
specification) has been added to the activity.

4. Click on the postcondition to open the d{ popup editor. Enter the
postcondition and confirm with Ctrl-Enter.

As an alternative to the popup editor, constraint specifications can be
added from the constraint editor (continue from step 2 above).

1. Add a constraint specification using the button + next to the specifica-
tion text field. Specifications are always of kind OpaqueExpression.

8.0.06 Create a new Constraint
Name Height
Visibility public [v]
— Duration
Context i Specifi A
ontex <undefined> [P purationinterval f

Constrained element Expression | (2]

InstanceValue —
Egh Interval

LiteralBoolean
Literalinteger
LiteralNull

~ LiteralReal E
LiteralString
LiteralUnlimitedNatural

@ OpaqueExpression ok |

StringExpression

T TimeExpression
2. On the constraint specification window, name the new specification.

«e Software released under the GNU/GPL License. JERTimelnicrve?
Click the button + next to language to add d{. Type dL into the text

UML | Profile |

4.3 MODEL SYSTEM DYNAMICS \

field on the left side and add it by clicking the right-pointing arrow.

[-NaNs) Language

'dL]
C

C++
Java
Natural language
(=]

~1Add selected elements
—r

o o |

Cancel | [OK J

3. Click into the body field and provide the constraint specification in
dC. In our example, we want the ball’s height to be between o and its
initial height H. Click somewhere outside the body field (e. g., reselect
the name field) to adopt the new body specification.

800 Create a new OpaqueExpression
Name Valid Height
n o Body - -
language | O | (& | (4| [X]| [~ 0<=h&h<=H
dL
Visibility public vl
Behavior <Undefined> [~ Type <Undefined> [-|
UML | Profile
@ [cancel | ok

4. Exit the constraint specification window, the constraint window, and
the postcondition window by clicking OK on each.

Next, we define the overall system dynamics. These consist of the con-
tinuous dynamics (the ball falls and jumps) and discrete dynamics (when
it hits the ground, the ball bounces back). We want the ball fall and jump
arbitrariliy often. Thus, discrete and continuous dynamics are repeated non-
deterministically many times in a loop.

1. Add an Initial Node from the palette. This node represents the start of
our system.

2. Add a Merge Node from the palette. This node represents the loop start.

3. Connect the initial node and the merge node with a Control Flow. The
default condition for such a flow is true, which means that it is executed
unconditionally. The condition can be hidden using Filter — Manage
Connector Labels from the context menu of the control flow.

4. Add an OpagqueAction from the palette and connect the merge node
with a control flow to the opaque action. This action represents the
continuous dynamics of our system. On the properties view, choose
a descriptive name for the action (e.g., “Fall and Jump”) and add
the stereotype Dynamics on the properties view. The opaque action

15

Figure 4.8: Enter dC
as constraint
specification language

Figure 4.9: Specify
the constraint body in
dL and confirm your
definition by clicking
outside the text field

16 | GRAPHICAL MODELING

represents the continuous dynamics in our system. Click the “Fall and
Jump” label to open the dC popup editor and define the dynamics

Figure 4.10: Define using a differential-algebraic equation.
the continuous
dynamics of a hybrid
system as
differential-algebraic
equation in the dC
popup editor of an
OpaqueAction with
stereotype Dynamics

[true]

[true

adynamicss

h'=w, v'=-qg, t'=1, h>=0

5. Add a Behavior Call Action from the palette. Although the discrete
dynamics of the bouncing ball example is rather simple, we want to
have a separate activity diagram to demonstrate decomposition. We

Figure 4.11: Use Call create a new behavior named “DiscreteDynamics”.
Behavior Actions fo
decompose the 800

dynamics and create

! Create a new Call Behavior Action
new Behavior nodes

Create a new Behavior @

(*) Create behavior

Behavior type: Activity -> Behavior

Name: DiscreteDynamics

Element owner: <<System>> <Activity> SystemDynamics

Or assign an existing one
() 5elect behavior

Behawvior:

} Synchronous call @

@j | Cancel | [OK]

6. Add a Decision Node from the palette. This node represents the end of
the loop body.

7. Connect the decision node with the merge node using a Control Flow
as back edge. Select the stereotype Nondeterministic repetition for this
control flow. Then specify a loop invariant for the stereotype.

8. Add an Activity Final Node and connect the decision node with a control
flow. This finalizes the overall system dynamics as follows.

4.3 MODEL SYSTEM DYNAMICS |

~3) bouncingball.di 28

p
systemDynamics «PreConditionsinit

«PostCondition»Height

wdynamicss
all and Jump

Emu nceback : DiscreteD',rnamr'ﬁ%

h Dynamics 3 | Bf Structure

In the next step, we will specify the discrete dynamics of the system. The
discrete dynamics of the bouncing ball is rather simple: if the ball hits the
ground, it bounces back (i. e., the discrete dynamics inverts the ball’s velocity
and reduces it according to the damping factor), else it just keeps falling or
jumping (i. e., the discrete dynamics does nothing).

1. In the Model Editor view, add a New — Activity Diagram to the Discret-
eDynamics behavior created above using the context menu.

@ | | veniy souncing sar

J Validation >
New SysML Child >
w3 Export > °
e Import >
&= Outline B Model Explor New Child [
BIEE Newiagam - Create s new Actviy Disgram |
B2 Model 2 New Table > B Create a new Class Diagram
» %, <Package Import> U @ Delete B % Create a new Communication Diagram
- {_:v;t‘:;n;:vz:::: sl Rename 2 £] Create a new Component Diagram
b ¢ ownedRule (2) Create a new Composite Structure Diagram
¥ 1, ownedBehavior (1) Undo 74 %4 Create a new Deployment Diagram
Redo x4 B, Create a new Package Diagram
: t‘;::::":"‘zz"[g) Cut 98X T Create a new Sequence F)iagr.am
bt edge (6) Copy %®C % Create a new StateMachine Diagram
» L /node (8) Paste #2 Create a new UseCase Diagram

w O oAhiare. Ratl

Enable write
€2} 1 items selected

2. Add an Initial Node to denote the start of the discrete dynamics.

3. Connect the initial node to a decision node. This is the start of the
if-condition.

4. Add an Opaque Action to set the new velocity, and another one to reset
time. Tag both with the stereotype Deterministic Assignment to define
that they will set the value of variables in a deterministic manner. Click
the label of the action and set the values of velocity (v := —c -v) and
time (t == 0).

17

Figure 4.12:
Overview of bouncing
ball dynamics

Figure 4.13: Use the
context menu to add
a new activity
diagram to a UML
behavior

18 GRAPHICAL MODELING

5. Add a Merge Node, an Activity Final Node, and set the control flows to

Figure 4.14: The get the final dynamics as below.
discrete dynamics of

the bouncing ball 7 bouncingball.di 52

Exﬂmple DiscreteDynamics
(xdeterministicAssignments)
(sdeterministicAssignments)
L]
i—g Dynamics E'Q Structure i—; DiscreteDynamics §3 (
6. To set up navigation from the dynamics overview to the detailed
discrete dynamics, switch back to the tab Dynamics.
7. Double-click the behavior call action bounceback:DiscreteDynamics to
open the hyperlink configuration window.
8. Click the button + on the tab View Hyperlinks to open the Edit Hyperlink
Window.
9. Click the button Search and select the DiscreteDynamics activity dia-
Figure 4.15: Create a gram.
new hyperlink —

I

all and Jum,
Editors list | Tree View

+
Gf

type filter text
FE0oynamics
B Structure
¥ DiscreteDynamics

mﬂ

View hyperlinks | Document hyperlinks | Web hyperlinks | Defa

- List of View hyperlinks:
| ok | [cancel | ——

e 00 Edit Hyperlink

View: Q |

Tooltip text @ Use default

Cancel

10. Switch to the tab Default Hyperlinks, select the DiscreteDynamics hyper-
Figure 4.16: Set a link and press the right-arrow button to add it as default.

hyperlink as default J—
. . 8. 0.0 HyperLink
action for double-click ; 5 -
4 View hyperlinks | Document hyperlinks | Web hyperlinks | Defaults HyperLinks | Hyperlink diagram with Heuristic
on a diagram element ypertinks Detait yperinks (b double-cicl:

£ DiscreteDynamics - DiscreteDynamics

=

o] |2

]

ok [cancel

4.4 GENERATE TEXTUAL MODEL \

4.4 GENERATE TEXTUAL MODEL

1. Open the context menu of bouncingball.uml in the package explorer.

2. Click Acceleo Model to Text — Generate Differential DynamicLogic

{2 Package Explorer 52

v 55 sphinxtutorial
v @B src
£ model
9 bouncingball.di
K bouncingball.key
2 bouncingball.notal

7 bouncingball.uml

[E] Task List 52
o %% | o | X
Find P AL > Ver

¥ (3 Uncategorized
© || Verify Bouncing Ball |

= Outline & Model Explorer

B&| %
b rsran s

= B - bouncingball.di 53

ERNE

\ -

New 4
Open F3
Open With >
Show In 8w >
= Copy 3C
2 Copy Qualified Name
[Paste 8V
X Delete [intr
= Show Filtered Children (Alt+click)
2 Remove from Context Xo8l
<l Mark as Landmark X8t
Build Path >
Refactor 8T 4
223 Import...
43 Export...
 Refresh F5

Assign Working Sets...

creteDynamics £3

» 1 ownedRule (2) Run As » laration [l Console E Properties 53
> Value
>
43 Diagram Discrt Compare With > false
¥ T edge (6) Replace With > true
>/ ControlFlow B3 Discovery > March 22, 2
» /" ControlFlow - false
[Paste ®Y JUsers/smit
» /" ControlFlow
bouncingba
» /" ControlFlow Properties £l /sphinxtutc
» /" ControlFlow 15,082 byt
» /" ControlFlon) Refactor Model >
7 Acceleo Model to Text > B Generate DifferentialDynamicLogic

19

Figure 4.17: Click
Acceleo Model to
Text — Generate
Differential Dynam-
icLogic to generate
a textual dC model
from a graphical
UML model

HYBRID SYSTEM ANALYSIS

Abstract. This chapter introduces the analysis features of Spnx: Cor-
rectness properties about hybrid programs can be formally verified in
KeYmaera. In order to develop an intuition about the actual behavior of
a hybrid program, Spnx additionally simulates hybrid programs using
Mathematica and displays the traces of variable valuations.

Contents
5.1 Plot Simulated Traces of Hybrid Programs 21
5.2 Verify a Model with KeYmaera 22

5.1 PLOT SIMULATED TRACES OF HYBRID PROGRAMS

Senx uses Mathematica to create simulated traces of hybrid programs. The
simulation traces are displayed in the simulation view, which can be activated
by clicking Window — Show View — Other... — Senx — Hybrid Simulation.
You can create a simulation run for the model in the active editor by pressing
the gears icon in the simulation view. The context menu on the simulation
plot lets you select the displayed variables, scale and zoom the plot, save a
bitmap image or print the simulation trace.

K@/ bouncingball.key 5% = 0

1o ek
2 * Hybrid bouncing ball example.

* h = height

* v = velocity

* H = height limit

* g = gravitation
7 * ¢ = elastic dampening factor at floor (h=0)
5 * @provable

*/

\functions {

Rc, g, H, V;

13= \progranVariables {
4 Rh, v, t;

5}
16= \problem {

(9> 08&h >=08&VAZ <= 2%g*(H - h) & H >= 0 & ¢ = 4/5)

SN[C{h' = v, v' = g, h>=0};

((h = 05 v = -c*v) ++ (?h >= 8))
Y*@invariant(vA2 <= 2*g*(H - h) & h >= 0)
\](@<=h&h<=H

2}

Vi Tasks [History & Progress [Console ©]Error Log [l Properties [Proof - Search ¢ Hybrid Simulation 53 # =0

0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50 4.75 5.00 525 550 575 6.00 6.25 6.50

t

Figure 5.1: Inspect simulated traces of hybrid programs

21

22

| HYBRID SYSTEM ANALYSIS

5.2 VERIFY A MODEL WITH KEYMAERA

Senx uses KeYmaera to prove correctness properties about models in dC.
You can start KeYmaera from the context menu of a .key or .key.proof file in
the package explorer, or from the context menu of a textual editor.

o e
* Hybrid l'nodel of a bouncina ball.
\:f) Undo %z
- “”;tl[_’"s Revert File
R a; Save 8S
R H;
} Quick Outline %80
=\programVa Qpen Declaration F3
/* sta)
R h, v Open With »>
} Show In N 8w >
= “problem {
/* i| Cut #®X
= g>a | Copy 3EC (H-h) & H>=8
_ \[Paste ¥V | A
N ¢ Validate -
= | ” ping */
S i Rename Element NFER 4 #y
s Content Assist ~Space */
. Toggle Comment 8/
y» For.mat_ T®8F .«
N Quick Fix #1 condition*/
1 Shift Right
Shift Left
Find References +3G
Run As > &4 1 KeYmaera Proof (Local)
Debug As >
Team > Run Configurations...
Prohlems @ | Compare With > rries 52

Figure 5.2: Run KeYmaera from the context menu of any .key or .proof file

Senx will start KeYmaera as external application and show KeYmaera’s
information output in a console view. If absolutely necessary, you can stop
KeYmaera from the console using the red stop button (not encouraged). Note,
that this will force-quit KeYmaera without saving your work.

1#. Problems (@ Javadoc (¢} Declaration | E] Console 53 | Properties |Ee BIEE| 2 &9 = D
/ul ines/jdk1.7.0_1 KeYmaera -~ Prover
Found CE
HYPO: loop_inv_box_quan DISPROVABLE || P Start [Prune Proof | | [l Reuse [2=

inve- v A 2% g% (H -

Tasks Inner Node

HYPO: loop_inv_box_quan Env. with no model #1 2 .g -

inve- h>=0 — . v =29 (H-h),

— 0 0 Proof closed

thy v, 41 Hybrid
Ch, v, 1 = Property proved!
We might have changed the original | | Proof — st (P ‘,y'_) v, vi=-g t'=1,
CEX Counterexample s Proot Tree (T LiLIER
Found CE 1:=r imply right = e >60h=06)
HYPO: 1oop_inv_box_quan DISPROVABLE| 2:4l and left Branches: 9

inve-

3:al and left (¢ - v) ;

HYPO: 1oop_inv_box_quan 4:nl and left é

inve- h>-88&vA2<2 S:aland left
— 6:4l and left hahsH

A

th, v, £ 7:al and left

We might have changed the original
HYPO: loop_inv_box_quan PROVABLE
inve- h>=B88&vA2<2

| KR Strategy: Applied 49 rules (56.1 sec), closed 9 goals, 0 remaining
th, v, £
Th, v, £

Figure 5.3: The KeYmaera console.

PROOF COLLABORATION

Abstract. This chapter introduces the proof collaboration features of
Senx. Senx uses Eclipse for model and proof versioning, and is thus
compatible with common versioning systems such as svN and GIT.

Contents
6.1 Share and Collaborate on Textual Models 23
6.2 Share and Collaborate ona Proof 23
6.3 Export Open Goals of Partial Proofs 24
6.4 Import Geometric Relevance Filtering Results 25

6.1 SHARE AND COLLABORATE ON TEXTUAL MOD-
ELS

Textual models in d&, just as ordinary source code, can be versioned in a
source code repository. Differences between versions (updates, deletions, and
conflicts) can be compared and resolved using the standard Eclipse tools.

£7 Compare 04c-1-1_robot_2D-DynamicWindow.key 589 and 575 53

=g
K Text Compare ~ £ 945
K9 04c-1-1_robot_2D-DynamicWindow.key 589 K@ 04c-1-1_robot_2D-DynamicWindow.key 575
27 Ray; /* rotation center: y */ 28 R cy; /* rotation center: y */
28 Rr; /* radius of curvature */ 29 Rr; /* radius of curvature */
29 R ox; /* position of obstacle */ R ox; /* position of obstacle */
R oy; 1 R oy;
R odx; /* direction and linear velocity of obstacle */ 2 R odx; /* direction and linear velocity of obstacle */ -
R ody; R ody;
33 Rt /% time */ 4 R t; /* time */
4} s}
36 \problem{ 7\schemaVariables {
37 v>=0 \term R trm;
& Abs(x - 0x) > VA2 / (2*b) + V¥V / b)}
& Abs(y - oy) > vA2 / (2*b) + V¥V / b 4
&r>0 t1\rules {
& dxA2 + dyA2 = 1 4 absolute {
2 &A>=0 \find(Abs(trm))
&b>0 \replacewi th(\if(trm>=0) \then(trm) \else (-trm))
44 &V>=0 45 // \heuristics(beta) // if comment then not used autor
5 &0m>=0 4 8
At &ep>0 473
7 ->\[(/* control obstacle */ 48
48 odx 1= *; 49
ody = *; 50 \problem{
20dxA2 + 0dyAZ <= VAZ; 51 v>=0
5 & Abs(x - OX) > VA2 / (2%b) + V¥V / b
52 /* brake or remain stopped on your current curvatur 5 & AbsCy - oy) > VA2 / (2*b) + v*V / b
53 (a = -h) EVI W
] Properties [Console © Error Log & Progress () History 52 S| |BlE|rwm T=0

Jtrunk/robix/models/map2d/04c-1-1_robot_2D-DynamicWindow.key in https://cvs.concert.cs.cmu.edu/multigoali
Revision v Date Author

Comment
*589 1/31/13 5:28 PM smitsch Update to work with KeYmaera 3.1
575 1/30/13 8:20 PM smitsch Models and proofs with simpler invariants and preconditions
Action _[Affected paths A |Description

Figure 6.1: Comparison of textual models

6.2 SHARE AND COLLABORATE ON A PROOF

Just as for textual models, Spnx supports any source code repository con-
nected to Eclipse to version proofs. You can compare changes between your

23

24 | PROOF COLLABORATION

local version of a proof and the latest version in the source code repository
as follows.

1. Open the context menu of a proof and click Compare with — Latest from
Repository

2. Click Complete resource set(s)

Figure 6.2: Proof 3. Browse the proof comparison
comparison

oy i £ Compare K ; and versions 52 — =l

Structural differences

¥ 13 change(s) in Branch Body Preserves Invariant
7% 1 change(s) in Open Goal v_1>= 0, (dx_)A2+(@y_1)A2=1, r1> 0, v1=0| Abstx_1-ox1) > (1A2/@*b)+V*v1/l
< Attribute goal : EString in Open Goal v_1>= 0, (dx_)A2+(@y_DA2 =1, r1> 0, v1-0| Absix1-ox1) > DA2/@*E
& Rule modality_splitright has been added
& Rule random _ass_box_right has been added
& Builtin Update Simplification has been added
o Rule all_right has been added
Visualization of Structural Differences +
Workspace file: PassiveSafetyPartial.key.proof Repository file: PassiveSafetyPartal.key.proof
> 4 Rule and_left bt
> 4 Rule hide_left
> 4 Rule hide_left
> 4 Rule hide_left
> 4 Rule hide_left
> 4 Rule hide_left
> 4 Rule modality_split_right » % Rule hideteft
> 4 Rule random_ass_box_right > 4 Rule hide Jeft
» 4 Builtin Update Simplification » % Rule nide left
> 4 Rule all_right » % Rule hideteft
e i rght
> 4 Rule random_ass_box_right > + Rale randor 265, Bao ight
» 4 Builtin Update Simplification » 4 Builtin Update Simplification
> 4 Rule all_right

» 4 Rule all_right
#OpenGoal v.1>=0, @ DAZ+ @y DAr2=1, 11> 0 4 Open Goal v_1>=0, @xDA2+@y_DA2=1, 11> 0,

> 4 Rule all_right
> 4 Rule imp_right
> 4 Rule and_left
> 4 Rule and_left
> 4 Rule and_left
> 4 Rule hide_left

Differences | Properties Differences | Properties.

4. Use the buttons in the structural differences view header to copy
changes between versions

63 EXPORT OPEN GOALS OF PARTIAL PROOFS

1. Open the context menu of a proof and click Export...

Figure 6.3: Export an 2. Select Sphinx — Export Arithmetic Goal and click Next
arithmetic goal via

X ® O O Export
the export wizard

Select)
=]

Select an export destination:
type filter text
» =Run/Debug
V (= Sphinx
Export Arithmetic Goal

» (= Tasks

> (=Team
» (= XML
> (= Other

@ < Back Next > | Cancel Finish

Figure 6.4: Search an 3. Search for and select the open goal to export, click Next
open goal e
Select goal

Select an open goal to export

{ type filter text)

¥ Invariant Initially Valid
9>0,h>=0,t>=0,0<=¢,c<l,vA2<=2*g*(H-h),H>=0==>h>=0&vA2<=2%g*(H-h)
¥ Use Case
g>0,h>=0,t>=0,0<=cc<l,vA2<=2%g*(H-h),H>=0==> \forall Rv_L. \forall R h_1. \forall R t
¥ Body Preserves Invariant
g>0,h>=0,t>=0,0<=c,c<1,vA2<=2%g~(H-h), H>=0==> \forall Rv_0. \forall R h_0. \forall R t

@ [<Back][Next> [cancel | Finish

64 IMPORT GEOMETRIC RELEVANCE FILTERING RESULTS |

4. Select or create a new file to export, click Finish.

800

Create Open Goal File

Create a new Open Goal File. The selected goal will be exported
into this file.

Enter or select the parent folder:

sphinxtutorial /sre/ proof

‘Fbg sphinxtutorial
¥ = bin
(= META-INF
¥ = src
= model
[proof
== src-gen

File name: | invariant.goal

| Advanced >> |

< Back | Next > | cancel | [Finish]

6.4
SULTS
1. Open the context menu of a proof and click Import...
2. Select Sphinx — Geometric Relevance Filtering Result

3. Select a file from the file system or from the Eclipse workspace

4. Select the hiding suggestions to import into the proof (usually all) and

click Next.

IMPORT GEOMETRIC RELEVANCE FILTERING RE-

25

Figure 6.5: Select or
create a new file to
export

26 | PROOF COLLABORATION

Figure 6.6: Select

hiding suggestions 8006
Geometric relevance filtering
Select geometric relevance filtering result
() From file system: [] | Browse... |
@ From workspace: ‘sphinxtutorial/sr(/prooffinvariant.grf ‘ Browse... \
Hide left
% E>= o | Select Al
<=c
Mc<l -
| Deselect All
==>
Hide right
| select All
| DeselectAll |
@ [<Back | [Next> | [cancel | Finish
Figure 6.7: Select 5. Select the applicable goals (usually all) and click Finish.

applicable goals
pp 8 ——

Goal selection

Select where to apply the geometric relevance filtering result

Applicable open goals

™ g>0 h>=0,t>=0, 0<=c, c< 1, vA2<=2%g*(H-h) | Select All |

Deselect All

® [<Back | Next > [cancet | [Finish |

Commit the changes to the source code repository or load the partial proof
in KeYmaera to continue proving.

BIBLIOGRAPHY

[1] MiTscH, S., GHORBAL, K., AND PLATZER, A. On provably safe obstacle
avoidance for autonomous robotic ground vehicles. In Robotics: Science
and Systems (2013).

[2] M1TscH, S., Loos, S. M., AND PLATZER, A. Towards formal verification of
freeway traffic control. In ICCPS (2012), IEEE, pp. 171-180.

[3] MiTscH, S., PAssMORE, G. O., AND PLATZER, A. A vision of collaborative
verification-driven engineering of hybrid systems. In Do-Form (2013),
M. Kerber, C. Lange, and C. Rowat, Eds., AISB, pp. 8-17.

27

	Titlepage
	Contents
	List of Figures

	1 Overview
	1.1 General Information

	2 Installation
	2.1 Installation from Eclipse Update Site
	2.2 Configuration
	2.2.1 Install and Configure KeYmaera
	2.2.2 Configure the Editors
	2.2.3 Configure Mathematica and Hybrid Program Simulation
	2.2.4 Show Additional Views
	2.2.5 Add Modeling Templates

	3 Textual Modeling
	3.1 Create a new Project
	3.2 Refactor your Model
	3.3 Further Editor Features

	4 Graphical Modeling
	4.1 Create a new Graphical Model
	4.2 Model System Structure
	4.3 Model System Dynamics
	4.4 Generate Textual Model

	5 Hybrid System Analysis
	5.1 Plot Simulated Traces of Hybrid Programs
	5.2 Verify a Model with KeYmaera

	6 Proof Collaboration
	6.1 Share and Collaborate on Textual Models
	6.2 Share and Collaborate on a Proof
	6.3 Export Open Goals of Partial Proofs
	6.4 Import Geometric Relevance Filtering Results

	Bibliography
	Index

