
Lecture 2 & 3 – 15-441 in 2 Days

15-440 Distributed Systems

WARNING!!!!

• These slides (and any other slides posted for
class) are *NOT* meant to be a complete guide or
class notes

• Please take notes in class
• There is often additional material presented
• Slides are often hard to understand after the fact

• I will make sure to post at least a draft of the
slides in advance of class
• Gives you a start on notes J

2

Distributed Systems vs. Networks

• Low level (c/go)
• Run forever
• Support others
• Adversarial environment
• Distributed & concurrent
• Resources matter

• And have it implemented/run by vast numbers of
different people with different goals/skills

3

Keep an eye out for…

• Modularity, Layering, and Decomposition:
• Techniques for dividing the work of building systems
• Hiding the complexity of components from each other
• Hiding implementation details to deal with heterogeneity

• Naming/lookup/routing
• Resource sharing and isolation

• Models and assumptions about the environment
and components

• Understanding and estimating performance
4

Today’s & Tuesday’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

• Transport protocols

• Application design

5

Basic Building Block: Links

• Electrical questions
• Voltage, frequency, …
• Wired or wireless?

• Link-layer issues: How to send data?
• When to talk – can either side talk at once?
• What to say – low-level format?

Node Link Node

6

Basic Building Block: Links

• … But what if we want more hosts?

• Scalability?!

One wire

Wires for everybody!

7

Multiplexing

• Need to share network resources

• How? Switched network
• Party “A” gets resources sometimes
• Party “B” gets them sometimes

• Interior nodes act as “Switches”

• What mechanisms to share resources?

8

In the Old Days…Circuit Switching

9

Packet Switching

• Source sends information as self-contained packets that
have an address.
• Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
• Switches use the address in the packet to determine how to

forward the packets
• Store and forward

• Analogy: a letter in surface mail.

10

Packet Switching –
Statistical Multiplexing

• Switches arbitrate between inputs
• Can send from any input that’s ready

• Links never idle when traffic to send
• (Efficiency!)

Packets

11

What if Network is Overloaded?

Problem: Network Overload

• Short bursts: buffer
• What if buffer overflows?

• Packets dropped
• Sender adjusts rate until load = resources à “congestion control”

Solution: Buffering and Congestion Control

12

Model of a communication channel

• Latency - how long does it take for the first bit to reach
destination

• Capacity - how many bits/sec can we push through?
(often termed “bandwidth”)

• Jitter - how much variation in latency?

• Loss / Reliability - can the channel drop packets?

• Reordering

13

Packet Delay

• Sum of a number of different delay components:

• Propagation delay on each link.
• Proportional to the length of the link

• Transmission delay on each link.
• Proportional to the packet size and 1/link speed

• Processing delay on each router.
• Depends on the speed of the router

• Queuing delay on each router.
• Depends on the traffic load and queue size

AB ACBD

14

Packet Delay

Prop + xmit

2*(Prop + xmit)

2*prop + xmit

When does cut-through matter?

Next: Routers have finite speed (processing delay)

Routers may buffer packets (queueing delay)

Store & Forward

Cut-through

15

Sustained Throughput

• When streaming packets, the network works like
a pipeline.
• All links forward different packets in parallel

• Throughput is determined by the slowest stage.
• Called the bottleneck link

• Does not really matter why the link is slow.
• Low link bandwidth
• Many users sharing the link bandwidth

50
37 30 104 59 17 267

16

Some simple calculations

• Cross country latency
• Distance/speed = 5 * 10^6m / 2x10^8m/s = 25 * 10^-3 s = 25ms
• 50ms RTT

• Link speed (capacity) 100Mbps
• Packet size = 1250 bytes = 10 kbits

• Packet size on networks usually = 1500bytes across wide area or
9000bytes in local area

• 1 packet takes
• 10k/100M = .1 ms to transmit
• 25ms to reach there
• ACKs are small à so 0ms to transmit
• 25ms to get back

• Effective bandwidth = 10kbits/50.1ms = 200kbits/sec L

17

Think about this…

• What if we sent two packets before waiting for an
ACK
• What if we sent N packets?
• How many packets do we need to send before we use

up the capacity of the link?

18

0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

Some Examples

• How long does it take to send a 100 Kbit file?
• Assume a perfect world
• And a 100 Kbit file

Throughput
Latency 100 Kbit/s

500 µsec

10 msec

100 msec

1 Mbit/s

1.0005 0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

100 Mbit/s

0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

0.1005 0.0105

0.11 0.02

0.2 0.11

0.0006

0.0101

0.1001

10 Kbit file

19

0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

Some Examples

• How long does it take to send a 100 Kbit file?
• Assume a perfect world

Throughput
Latency 100 Kbit/s

500 µsec

10 msec

100 msec

1 Mbit/s

1.0005 0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

100 Mbit/s

20

0.1005

1.01 0.11

1.1 0.2

0.0015

0.011

0.101

0.1005 0.0105

0.11 0.02

0.2 0.11

0.0006

0.0101

0.1001

Some Examples

• How long does it take to send a 10 Kbit file?
• Assume a perfect world

Throughput
Latency 100 Kbit/s

500 µsec

10 msec

100 msec

1 Mbit/s 100 Mbit/s

21

22

Example: Ethernet Packet

• Sending adapter encapsulates IP datagram (or
other network layer protocol packet) in Ethernet
frame

22

23

Ethernet Frame Structure

• Each protocol layer needs to provide some
hooks to upper layer protocols
• Demultiplexing: identify which upper layer

protocol packet belongs to
• E.g., port numbers allow TCP/UDP to identify

target application
• Ethernet uses Type field

• Type: 2 bytes
• Indicates the higher layer protocol, mostly IP

but others may be supported such as Novell
IPX and AppleTalk

23

24

Ethernet Frame Structure (cont.)

• Addresses:
• 6 bytes
• Each adapter is given a globally unique address

at manufacturing time
• Address space is allocated to manufacturers

• 24 bits identify manufacturer
• E.g., 0:0:15:* à 3com adapter

• Frame is received by all adapters on a LAN and
dropped if address does not match

• Special addresses
• Broadcast – FF:FF:FF:FF:FF:FF is “everybody”
• Range of addresses allocated to multicast

• Adapter maintains list of multicast groups node is
interested in

24

Packet Switching

• Source sends information as self-contained packets that
have an address.
• Source may have to break up single message in multiple

• Each packet travels independently to the destination host.
• Switches use the address in the packet to determine how to

forward the packets
• Store and forward

• Analogy: a letter in surface mail.

25

Frame Forwarding

• A machine with MAC Address lies
in the direction of number port of
the bridge

• For every packet, the bridge “looks
up” the entry for the packets
destination MAC address and
forwards the packet on that port.
• Other packets are broadcast – why?

• Timer is used to flush old entries

8711C98900AA 2

MAC
Address Port

A21032C9A591 1
99A323C90842 2

301B2369011C 2
695519001190 3

15

Age

36

01

16

11

Bridge
1

3 2

26

Learning Bridges

• Manually filling in bridge tables?
• Time consuming, error-prone

• Keep track of source address of packets arriving
on every link, showing what segment hosts are on
• Fill in the forwarding table based on this information

host host host host host

host host host host host

host

host

Bridge

27

Today’s & Tuesday’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

• Transport protocols

• Application design

28

Internet

• An inter-net: a network of
networks.
• Networks are connected using

routers that support
communication in a hierarchical
fashion

• Often need other special devices
at the boundaries for security,
accounting, ..

• The Internet: the interconnected
set of networks of the Internet
Service Providers (ISPs)
• About 17,000 different networks

make up the Internet

Internet

29

Challenges of an internet

• Heterogeneity
• Address formats
• Performance – bandwidth/latency
• Packet size
• Loss rate/pattern/handling
• Routing
• Diverse network technologies à satellite links, cellular

links, carrier pigeons
• In-order delivery

• Need a “standard” that everyone can use à IP
30

Internet

Computer 1 Computer 2

Need naming and routing

How To Find Nodes?

31

Naming

What’s the IP address for www.cmu.edu?

It is 128.2.11.43

Translates human readable names to logical endpoints

Local DNS ServerComputer 1

32

Routing

R

R

R

RRH

H

H

H

R

RH

R

Routers send
packet towards

destination

H: Hosts

R: Routers

33

Network Service Model

• What is the service model for inter-network?
• Defines what promises that the network gives for any

transmission
• Defines what type of failures to expect

• best-effort

• Ethernet/Internet– packets can get lost, etc.

34

Possible Failure models

• Fail-stop:
• When something goes wrong, the process stops / crashes /

etc.
• Fail-slow or fail-stutter:

• Performance may vary on failures as well
• Byzantine:

• Anything that can go wrong, will.
• Including malicious entities taking over your computers and

making them do whatever they want.
• These models are useful for proving things;
• The real world typically has a bit of everything.

• Deciding which model to use is important!

35

Example: project 1

• Project 1: Build a bitcoin miner
• Server --- many clients
• Communication:

• Send job
• ACK job
• do some work
• send result to server
• (repeat)

• IP communication model:
• Messages may be lost, re-ordered, corrupted (we’ll ignore

corruption, mostly, except for some sanity checking)
• Fail-stop node model:

• You don’t need to worry about evil participants faking you out.

36

Fancier Network Service Models

• What if you want more?
• Performance guarantees (QoS)
• Reliability

• Corruption
• Lost packets

• Flow and congestion control
• Fragmentation
• In-order delivery
• Etc…

• If network provided this, programmers don’t have to
implement these features in every application

• But note limitations: this can’t turn a byzantine failure
model into a fail-stop model...

37

What if the Data gets Corrupted?

Internet
GET inrex.htmlGET index.html

Solution: Add a checksum

Problem: Data Corruption

0,9 9 6,7,8 21 4,5 7 1,2,3 6X

38

What if the Data gets Lost?

Internet
GET index.html

Problem: Lost Data

Internet
GET index.html

Solution: Timeout and Retransmit

GET index.htmlGET index.html

39

Solution: Add Sequence Numbers

Problem: Out of Order

What if the Data is Out of Order?

GETx.htindeml

GET x.htindeml

GET index.html

ml 4 inde 2 x.ht 3 GET 1

40

Lecture 2 & 3 – 15-441 in 2 Days
(Part 2)

15-440 Distributed Systems

Networks [including end points]
Implement Many Functions

• Link
• Multiplexing
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation
• Etc….

42

What is Layering?

• Modular approach to network functionality
• Example:

Link hardware

Host-to-host connectivity

Application-to-application channels

Application

43

What is Layering?

Host Host

Application

Transport

Network

Link

User A User B

Modular approach to network functionality

Peer Layer Peer Layer

44

Layering Characteristics

• Each layer relies on services from layer below and
exports services to layer above

• Interface defines interaction with peer on other
hosts

• Hides implementation - layers can change without
disturbing other layers (black box)

45

What are Protocols?

• An agreement between parties on
how communication should take
place

• Module in layered structure

• Protocols define:
• Interface to higher layers (API)
• Interface to peer (syntax & semantics)

• Actions taken on receipt of a
messages

• Format and order of messages
• Error handling, termination, ordering of

requests, etc.

• Example: Buying airline ticket

Friendly greeting

Muttered reply

Destination?

Pittsburgh

Thank you

46

Today’s & Tuesday’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

• Transport protocols

• Application design

47

Goals [Clark88]

0 Connect existing networks
initially ARPANET and ARPA packet radio network

1.Survivability
ensure communication service even in the presence of

network and router failures
2.Support multiple types of services
3. Must accommodate a variety of networks
4. Allow distributed management
5. Allow host attachment with a low level of effort
6. Be cost effective
7. Allow resource accountability

48

Goal 0: Connecting Networks

• How to internetwork various network
technologies
• ARPANET, X.25 networks, LANs, satellite

networks, packet networks, serial links…
• Many differences between networks

• Address formats
• Performance – bandwidth/latency
• Packet size
• Loss rate/pattern/handling
• Routing

49

Gateway Alternatives

• Translation
• Difficulty in dealing with different features supported by

networks
• Scales poorly with number of network types (N^2

conversions)
• Standardization

• “IP over everything” (Design Principle 1)
• Minimal assumptions about network
• Hourglass design

50

IP Hourglass

• Need to interconnect many
existing networks

• Hide underlying technology
from applications

• Decisions:
• Network provides minimal

functionality
• “Narrow waist”

Tradeoff: No assumptions, no guarantees.

Technology

Applications
email WWW phone...

SMTP HTTP RTP...

TCP UDP…

IP

ethernet PPP…

CSMA async sonet...

copper fiber radio...

51

IP Layering (Principle 2)

• Relatively simple
• Sometimes taken too far

Router RouterHost Host

Application

Transport

Network

Link

52

Goal 1: Survivability

• If network is disrupted and reconfigured…
• Communicating entities should not care!
• No higher-level state reconfiguration

• How to achieve such reliability?
• Where can communication state be stored?

Network Host

Failure handing Replication “Fate sharing”
Net Engineering Tough Simple
Switches Maintain state Stateless
Host trust Less More

53

Fate Sharing

• Lose state information for an entity if and only if the entity
itself is lost.

• Examples:
• OK to lose TCP state if one endpoint crashes

• NOT okay to lose if an intermediate router reboots

• Tradeoffs
• Survivability: Heterogeneous network à less information available

to end hosts and Internet level recovery mechanisms
• Trust: must trust endpoints more

Connection
State StateNo State

54

End-to-End Argument

• Deals with where to place functionality
• Inside the network (in switching elements)
• At the edges

• Argument
• If you have to implement a function end-to-end anyway

(e.g., because it requires the knowledge and help of the
end-point host or application), don’t implement it
inside the communication system

• Unless there’s a compelling performance enhancement

• Key motivation for split of functionality between
TCP,UPD and IP

Further Reading: “End-to-End Arguments in System Design.” Saltzer, Reed, and Clark. 55

IP Layering

• Relatively simple

Bridge/Switch Router/GatewayHost Host

Application

Transport

Network

Link

Physical

56

The Internet Protocol Suite

UDP TCP

Data Link

Physical

Applications

The Hourglass Model

Waist

The waist facilitates interoperability

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

57

Layer Encapsulation

Get index.html

Connection ID

Source/Destination

Link Address

User A User B

58

Multiplexing and Demultiplexing

• There may be multiple
implementations of each
layer.
• How does the receiver know

what version of a layer to
use?

• Each header includes a
demultiplexing field that is
used to identify the next
layer.
• Filled in by the sender
• Used by the receiver

• Multiplexing occurs at
multiple layers. E.g., IP,
TCP, …

IP

TCP

IP

TCP

V/HL TOS Length
ID Flags/Offset

TTL Prot. H. Checksum
Source IP address

Destination IP address
Options..

59

Protocol Demultiplexing

• Multiple choices at each layer

FTP HTTP TFTPNV

TCP UDP

IP

NET1 NET2 NETn…

TCP/UDPIP
IPX

Port
Number

Network

Protocol
Field

Type
Field

60

IP Packets/Service Model

• Low-level communication model provided by Internet
• Datagram

• Each packet self-contained
• All information needed to get to destination
• No advance setup or connection maintenance

• Analogous to letter or telegram
0 4 8 12 16 19 24 28 31

version HLen TOS Length

Identifier Flag Offset

TTL Protocol Checksum

Source Address

Destination Address

Options (if any)

Data

Header
IPv4
Packet
Format

61

Aside: Interaction with Link Layer

• How does one find the Ethernet address of a IP
host?

• ARP
• Broadcast search for IP address

• E.g., “who-has 128.2.184.45 tell 128.2.206.138” sent to
Ethernet broadcast (all FF address)

• Destination responds (only to requester using unicast)
with appropriate 48-bit Ethernet address
• E.g, “reply 128.2.184.45 is-at 0:d0:bc:f2:18:58” sent to

0:c0:4f:d:ed:c6

62

IP Addresses: How to Get One?

Network (network portion):
• Get allocated portion of ISP’s address space:

ISP's block 11001000 00010111 00010000 00000000 200.23.16.0/20

Organization 0 11001000 00010111 00010000 00000000 200.23.16.0/23

Organization 1 11001000 00010111 00010010 00000000 200.23.18.0/23

Organization 2 11001000 00010111 00010100 00000000 200.23.20.0/23
... ….. …. ….

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

63

IP Addresses: How to Get One?

• How does an ISP get block of addresses?
• From Regional Internet Registries (RIRs)

• ARIN (North America, Southern Africa), APNIC (Asia-Pacific),
RIPE (Europe, Northern Africa), LACNIC (South America)

• How about a single host?
• Hard-coded by system admin in a file
• DHCP: Dynamic Host Configuration Protocol: dynamically

get address: “plug-and-play”
• Host broadcasts “DHCP discover” msg
• DHCP server responds with “DHCP offer” msg
• Host requests IP address: “DHCP request” msg
• DHCP server sends address: “DHCP ack” msg

64

CIDR IP Address Allocation

Provider is given 201.10.0.0/21

201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 201.10.6.0/23

Provider

65

IP Address Utilization (‘06)

http://xkcd.com/195/

66

http://www.potaroo.net/tools/ipv4/

67

http://www.potaroo.net/tools/ipv4/

68

What Now?

• Last /8 given to RIR in 1/2011
• Mitigation

• Reclaim addresses (e.g. Stanford gave back class A in
2000)

• More NAT?
• Resale markets
• Slow down allocation from RIRs to LIRs (i.e. ISPs)

• IPv6?

69

Host Routing Table Example

• From “netstat –rn”
• Host 128.2.209.100 when plugged into CS ethernet
• Dest 128.2.209.100 à routing to same machine
• Dest 128.2.0.0 à other hosts on same ethernet
• Dest 127.0.0.0 à special loopback address
• Dest 0.0.0.0 à default route to rest of Internet

• Main CS router: gigrouter.net.cs.cmu.edu (128.2.254.36)

Destination Gateway Genmask Iface
128.2.209.100 0.0.0.0 255.255.255.255 eth0
128.2.0.0 0.0.0.0 255.255.0.0 eth0
127.0.0.0 0.0.0.0 255.0.0.0 lo
0.0.0.0 128.2.254.36 0.0.0.0 eth0

70

Today’s & Tuesday’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

• Transport protocols

• Application design

71

Networks [including end points]
Implement Many Functions

• Link
• Multiplexing
• Routing
• Addressing/naming (locating peers)
• Reliability
• Flow control
• Fragmentation
• Etc….

72

Design Question

• If you want reliability, etc.
• Where should you implement it?

Host Switch Switch Switch Switch Host

Option 1: Hop-by-
hop

Option 2: end-to-
end

73

A question

• Is hop-by-hop enough?
• [hint: What happens if a switch crashes? What if it’s

buggy and goofs up a packet?]

74

Internet Design: Types of Service

• Principle: network layer provides one simple service: best effort
datagram (packet) delivery
• All packets are treated the same

• Relatively simple core network elements
• Building block from which other services (such as reliable data

stream) can be built
• Contributes to scalability of network

• No QoS support assumed from below
• In fact, some underlying nets only supported reliable delivery

• Made Internet datagram service less useful!
• Hard to implement without network support
• QoS is an ongoing debate…

75

Types of Service

• TCP vs. UDP
• Elastic apps that need reliability: remote login or email
• Inelastic, loss-tolerant apps: real-time voice or video
• Others in between, or with stronger requirements
• Biggest cause of delay variation: reliable delivery

• Today’s net: ~100ms RTT
• Reliable delivery can add seconds.

• Original Internet model: “TCP/IP” one layer
• First app was remote login…
• But then came debugging, voice, etc.
• These differences caused the layer split, added UDP

76

Transport Protocols

• UDP provides just integrity and demux
• TCP adds…

• Connection-oriented
• Reliable
• Ordered
• Point-to-point
• Byte-stream
• Full duplex
• Flow and congestion controlled

77

User Datagram Protocol (UDP):
An Analogy

Postal Mail
• Single mailbox to receive

messages
• Unreliable J
• Not necessarily in-order

delivery
• Each letter is independent
• Must address each reply

Example UDP applications
Multimedia, voice over IP

UDP
• Single socket to receive

messages
• No guarantee of delivery
• Not necessarily in-order

delivery
• Datagram – independent

packets
• Must address each packet

Postal Mail
• Single mailbox to receive

letters
• Unreliable J
• Not necessarily in-order

delivery
• Letters sent independently
• Must address each letter

78

Transmission Control Protocol (TCP):
An Analogy

TCP
• Reliable – guarantee

delivery
• Byte stream – in-order

delivery
• Connection-oriented –

single socket per
connection

• Setup connection
followed by data transfer

Telephone Call
• Guaranteed delivery
• In-order delivery
• Connection-oriented
• Setup connection

followed by conversation

Example TCP applications
Web, Email, Telnet

79

Rough view of TCP

Time

Source DestData	pkt

ACKnowledgement

What	TCP	does:
1)	Figures	out	which	packets	got	through/lost
2)		Figures	out	how	fast	to	send	packets	to	use	all	of	the	unused	capacity,
- But	not	more
- And	to	share	the	link	approx.	equally	with	other	senders

(This	is	a	very incomplete	view	- take	15-441.	:)

80

Questions to ponder

• If you have a whole file to transmit,
how do you send it over the Internet?
• You break it into packets (packet-switched medium)
• TCP, roughly speaking, has the sender tell the receiver “got it!”

every time it gets a packet. The sender uses this to make sure that
the data’s getting through.

• If you acknowledge the correct receipt of the entire file (e.g. due to
e2e argument)... why bother acknowledging the receipt of the
individual packets???

• The answer: Imagine the waste if you had to retransmit
the entire file because one packet was lost. Ow.

81

82

Single TCP Flow
Router with large enough buffers for full link utilization

Today’s & Tuesday’s Lecture

• Network links and LANs

• Layering and protocols

• Internet design

• Transport protocols

• Application design

83

Client-Server Paradigm

Typical network app has two pieces: client and server

application
transport
network
data link
physical

application
transport
network
data link
physical

Client:
• Initiates contact with server

(“speaks first”)
• Typically requests service from

server,
• For Web, client is implemented in

browser; for e-mail, in mail
reader

Server:
• Provides requested service to

client
• e.g., Web server sends

requested Web page, mail server
delivers e-mail

request

reply

84

Client	/	
Server
Session

Client Server

socket socket

bind

listen

read

writeread

write

Connection
request

read

close

close EOF

open_listenfd

acceptconnect

open_clientfd

Socket API Operation Overview

85

What Service Does an Application
Need?

• Some apps (e.g., audio) can
tolerate some loss

• Other apps (e.g., file transfer,
telnet) require 100% reliable
data transfer

• Some apps (e.g., Internet
telephony, interactive
games) require low delay to
be “effective”

• Some apps (e.g., multimedia) require minimum amount of
bandwidth to be “effective”

• Other apps (“elastic apps”) make use of whatever bandwidth they
get

Data loss

Bandwidth

Timing

86

Transport Service Requirements of
Common Apps

no loss
no loss
no loss
loss-tolerant
(often)
loss-tolerant
(sometimes)
loss-tolerant
no loss

elastic
elastic
elastic
audio: 5Kb-1Mb
video:10Kb-5Mb
same as above

few Kbps
elastic

no
no
no
yes, 100’s msec

yes, few secs

yes, 100’s msec
yes and no: µs?

file transfer
e-mail

web documents
interactive

audio/video
non-interactve

audio/video
interactive games

financial apps

Application Data loss Bandwidth Time Sensitive

87

Why not always use TCP?

• TCP provides “more” than UDP
• Why not use it for everything??

• A: Nothing comes for free...
• Connection setup (take on faith) -- TCP requires one round-

trip time to setup the connection state before it can chat...
• How long does it take, using TCP, to fix a lost packet?

• At minimum, one “round-trip time” (2x the latency of the network)
• That could be 100+ milliseconds!

• If I guarantee in-order delivery,
what happens if I lose one packet in a stream of packets?

88

One lost packet

89

Pa
ck

et
#

Time

Sent packets

Received packets
(delivered to application)

Time to retransmit
lost packet

Delayed burst

Design trade-off

• If you’re building an app...

• Do you need everything TCP provides?
• If not:

• Can you deal with its drawbacks to take advantage of the
subset of its features you need?

OR
• You’re going to have to implement the ones you need on top

of UDP
• Caveat: There are some libraries, protocols, etc., that can help

provide a middle ground.
• Takes some looking around - they’re not as standard as UDP and

TCP.

90

Blocking sockets

• What happens if an application write()s to a socket
waaaaay faster than the network can send the data?

• TCP figures out how fast to send the data...

• And it builds up in the kernel socket buffers at the
sender... and builds...

• until they fill. The next write() call blocks (by default).

• What’s blocking? It suspends execution of the blocked
thread until enough space frees up...

91

In contrast to UDP

• UDP doesn’t figure out how fast to send
data, or make it reliable, etc.

• So if you write() like mad to a UDP socket...

• It often silently disappears. Maybe if you’re
lucky the write() call will return an error. But
no promises.

92

Web Page Retreival

1. Static configuration
• IP address, DNS server IP address, IP address of

routers,
2. ARP for router
3. DNS lookup for web server

• Several packet exchanges for lookup
4. TCP SYN exchange
5. HTTP Get request
6. HTTP response

• Slow start, retransmissions, etc.

93

Caching Helps

1. Static configuration
• IP address, DNS server IP address, IP address of

routers,
2. ARP for router
3. DNS lookup for web server

• Several packet exchanges for lookup
4. TCP SYN exchange
5. HTTP Get request
6. HTTP response

• Slow start, retransmissions, etc.

94

Summary: Internet Architecture

• Packet-switched datagram
network

• IP is the “compatibility
layer”
• Hourglass architecture
• All hosts and routers run IP

• Stateless architecture
• no per flow state inside

network

IP

TCP UDP

ATM

Satellite

Ethernet

95

Summary: Minimalist Approach

• Dumb network
• IP provide minimal functionalities to support connectivity

• Addressing, forwarding, routing

• Smart end system
• Transport layer or application performs more sophisticated

functionalities
• Flow control, error control, congestion control

• Advantages
• Accommodate heterogeneous technologies (Ethernet,

modem, satellite, wireless)
• Support diverse applications (telnet, ftp, Web, X windows)
• Decentralized network administration

96

Rehashing all of that...

• TCP is layered on top of IP
• IP understands only the IP header
• The IP header has a “protocol” ID that gets set to TCP
• The TCP at the receiver understands how to parse the TCP

information
• IP provides only “best-effort” service
• TCP adds value to IP by adding retransmission, in-order

delivery, data checksums, etc., so that programmers don’t
have to re-implement the wheel every time. It also helps
figure out how fast to send data. This is why TCP sockets
can “block” from the app perspective.

• The e2e argument suggests that functionality that must be
implemented end-to-end anyway (like retransmission in
the case of dead routers) should probably be implemented
only there -- unless there’s a compelling perf. optimization

97

Proj 1 and today’s material

• You’ll use UDP. Why?
• A1: The course staff is full of sadists who want you to

do a lot of work. This is true in part: timeouts and
retransmission are a core aspect of using the network.

• A2: The communication needed is very small, and you
have to implement a lot of reliability stuff anyway to
ensure that the work gets done...

• Honestly? This one seems to me like a middle ground.
You might use TCP for “other” reasons (firewalls that
block everything but TCP), or to avoid the need for the
“job ack” part of the protocol. Or you might stick with
UDP to reduce the overhead at the server.

98

Last Time

• Modularity, Layering, and Decomposition
• Example: UDP layered on top of IP to provide

application demux (“ports”)
• Resource sharing and isolation

• Statistical multiplexing - packet switching

• Dealing with heterogenity
• IP “narrow waist” -- allows many apps, many network

technologies
• IP standard -- allows many impls, same proto

99

Application-level Delay

Delay of
one packet

Average
sustained

throughput

Delay* + Size
Throughput

* For minimum sized packet

Units: seconds +
bits/(bits/seconds)

100

A Word about Units

• What do “Kilo” and “Mega” mean?
• Depends on context

• Storage works in powers of two.
• 1 Byte = 8 bits
• 1 KByte = 1024 Bytes
• 1 MByte = 1024 Kbytes

• Networks work in decimal units.
• Network hardware sends bits, not Bytes
• 1 Kbps = 1000 bits per second
• To avoid confusion, use 1 Kbit/second

• Why? Historical: CS versus ECE.

101

