
Time Synchronization

15-440 Distributed Systems

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

2

Why Global Timing?

• Suppose there were a globally consistent time
standard

• Would be handy
• Who got last seat on airplane?
• Who submitted final auction bid before deadline?
• Did defense move before snap?

3

Impact of Clock Synchronization

• When each machine has its own clock, an event
that occurred after another event may nevertheless
be assigned an earlier time.

4

Replicated Database Update

• Updating a replicated database and leaving it in
an inconsistent state

5

Time Standards

• UT1 (Universal Time
• Based on astronomical observations
• “Greenwich Mean Time”

• TAI (Temps Atomique International)
• Started Jan 1, 1958
• Each second is 9,192,631,770 cycles of radiation emitted by

Cesium atom
• Has diverged from UT1 due to slowing of earth’s rotation

• UTC (Temps universel coordonné)
• TAI + leap seconds to be within 0.9s of UT1
• Currently 35
• Most recent: June 30, 2012

6

Comparing Time Standards

UT1 −	UTC

7

Coordinated Universal Time
(UTC)

• Is broadcast from radio stations on land and satellite (e.g.
GPS)

• Computers with receivers can synchronize their clocks
with these timing signals

• Signals from land-based stations are accurate to about
0.1-10 millisecond

• Signals from GPS are accurate to about 1 microsecond
• Why can't we put GPS receivers on all our computers?

8

Clocks in a Distributed System

• Computer clocks are not generally in perfect agreement
• Skew: the difference between the times on two clocks (at any instant)

• Computer clocks are subject to clock drift (they count time at different
rates)
• Clock drift rate: the difference per unit of time from some ideal reference

clock
• Ordinary quartz clocks drift by about 1 sec in 11-12 days. (10-6 secs/sec).
• High precision quartz clocks drift rate is about 10-7 or 10-8 secs/sec

Network

9

Clock Synchronization Algorithms

• The relation between clock time and UTC
when clocks tick at different rates.

10

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

11

Perfect networks

• Messages always arrive, with propagation delay
exactly d

• Sender sends time T in a message
• Receiver sets clock to T+d

• Synchronization is exact

12

Synchronous networks

• Messages always arrive, with propagation delay
at most D

• Sender sends time T in a message
• Receiver sets clock to T + D/2

• Synchronization error is at most D/2

13

Synchronization in the real world

• Real networks are asynchronous
• Message delays are arbitrary

• Real networks are unreliable
• Messages don’t always arrive

14

Cristian’s Time Sync

mr

mt

p
Time server,S

• A time server S receives signals from a UTC source
• Process p requests time in mr and receives t in mt from S
• p sets its clock to t + RTT/2
• Accuracy ± (RTT/2 - min) :

• because the earliest time S puts t in message mt is min after p sent mr.
• the latest time was min before mt arrived at p
• the time by S’s clock when mt arrives is in the range [t+min, t + RTT - min]

Tround is the round trip time recorded by p
min is an estimated minimum one way delay

15

Berkeley algorithm

• Cristian’s algorithm -
• a single time server might fail, so they suggest the use of a group of

synchronized servers
• it does not deal with faulty servers

• Berkeley algorithm (also 1989)
• An algorithm for internal synchronization of a group of computers
• A master polls to collect clock values from the others (slaves)
• The master uses round trip times to estimate the slaves’ clock values
• It takes an average (eliminating any above average round trip time or with

faulty clocks)
• It sends the required adjustment to the slaves (better than sending the

time which depends on the round trip time)
• Measurements

• 15 computers, clock synchronization 20-25 millisecs drift rate < 2x10-5

• If master fails, can elect a new master to take over (not in bounded time)

•
16

The Berkeley Algorithm (1)

• The time daemon asks
all the other machines
for their clock values.

17

The Berkeley Algorithm (2)

• The machines
answer.

18

The Berkeley Algorithm (3)

• The time daemon tells
everyone how to
adjust their clock.

19

Network Time Protocol (NTP)

1

2

3

2

3 3

• A time service for the Internet - synchronizes clients to
UTC

Figure 10.3

Reliability from redundant paths, scalable, authenticates
time sources

Primary servers are connected to UTC
sourcesSecondary servers are synchronized to

primary servers
Synchronization subnet - lowest level servers
in users’ computers

20

The Network Time Protocol (NTP)

• Uses a hierarchy of time servers
• Class 1 servers have highly-accurate clocks

• connected directly to atomic clocks, etc.
• Class 2 servers get time from only Class 1 and Class 2

servers
• Class 3 servers get time from any server

• Synchronization similar to Cristian’s alg.
• Modified to use multiple one-way messages instead of

immediate round-trip
• Accuracy: Local ~1ms, Global ~10ms

21

NTP Reference Clock Sources
(1997 survey)
• In a survey of 36,479 peers, found 1,733 primary and backup

external reference sources
• 231 radio/satellite/modem primary sources

• 47 GPS satellite (worldwide), GOES satellite (western hemisphere)
• 57 WWVB radio (US)
• 17 WWV radio (US)
• 63 DCF77 radio (Europe)
• 6 MSF radio (UK)
• 5 CHU radio (Canada)
• 7 modem time service (NIST and USNO (US), PTB (Germany), NPL

(UK))
• 25 other (precision PPS sources, etc.)

• 1,502 local clock backup sources (used only if all other sources
fail)

• For some reason or other, 88 of the 1,733 sources appeared
down at the time of the survey

22

23

Udel Master Time Facility (MTF)
(from January 2000)

Spectracom 8170 WWVB Receiver

Spectracom 8170 WWVB Receiver

Spectracom 8183 GPS Receiver

Spectracom 8183 GPS Receiver
Hewlett Packard 105A Quartz
Frequency Standard

Hewlett Packard 5061A Cesium Beam
Frequency Standard

NTP Protocol

• All modes use UDP
• Each message bears timestamps of recent events:

• Local times of Send and Receive of previous message
• Local times of Send of current message

• Recipient notes the time of receipt T3 (we have T0,
T1, T2, T3)

24

T3

T2T1

T0

Server

Client

Time

m m'

Time

Accuracy of NTP

• Timestamps
• t0 is the client's timestamp of the request packet transmission,
• t1 is the server's timestamp of the request packet reception,
• t2 is the server's timestamp of the response packet transmission and
• t3 is the client's timestamp of the response packet reception.

• RTT = wait_time_client – server_proc_time
= (t3-t0) – (t2-t1)

• Offset = ((t1-t0) + (t2-t3))/2
= ((offset + delay) + (offset – delay))/2

• NTP servers filter pairs <rtti, offseti>, estimating reliability
from variation, allowing them to select peers

• Accuracy of 10s of millisecs over Internet paths (1 on
LANs)

25

How To Change Time

• Can’t just change time
• Why not?

• Change the update rate for the clock
• Changes time in a more gradual fashion
• Prevents inconsistent local timestamps

26

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

27

Logical time

• Capture just the “happens before” relationship
between events
• Discard the infinitesimal granularity of time
• Corresponds roughly to causality

28

Logical time and logical clocks
(Lamport 1978)

• Events at three processes

29

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• Instead of synchronizing clocks, event ordering can be used

1. If two events occurred at the same process pi (i = 1, 2, … N) then
they occurred in the order observed by pi, that is the definition of:
“® i” (“happened before” i)

2. when a message, m is sent between two processes, send(m)
happens before receive(m)

3. The “happened before” relation is transitive

• The happened before relation is the relation of causal ordering

30

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• a ® b (at p1) c ®d (at p2)
• b ® c because of m1

• also d ® f because of m2

31

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Logical time and logical clocks
(Lamport 1978)

• Not all events are related by ®
• Consider a and e (different processes and no chain

of messages to relate them)
• they are not related by ® ; they are said to be concurrent
• written as a || e

32

p1

p2

p3

a b

c d

e f

m1

m2

Physical

time

Lamport Clock (1)

• A logical clock is a monotonically increasing software counter
• It need not relate to a physical clock.

• Each process pi has a logical clock, Li which can be used to
apply logical timestamps to events

• Rule 1: Li is incremented by 1 before each event at process pi
• Rule 2:

• (a) when process pi sends message m, it piggybacks t = Li
• (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1 before

timestamping the event receive (m)

33

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport’s algorithm

• Each process i keeps a local clock, Li
• Three rules:

1. At process i, increment Li before each event
2. To send a message m at process i, apply rule 1 and

then include the current local time in the message:
i.e., send(m,Li)

3. To receive a message (m,t) at process j, set Lj =
max(Lj,t) and then apply rule 1 before time-stamping
the receive event

• The global time L(e) of an event e is just its local
time

• For an event e at process i, L(e) = Li(e)

34

Lamport Clock (1)

• each of p1, p2, p3 has its logical clock initialised to zero,
• the clock values are those immediately after the event.
• e.g. 1 for a, 2 for b.

• for m1, 2 is piggybacked and c gets max(0,2)+1 = 3

35

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport Clock (1)

• e ®e’ implies L(e)<L(e’)

• The converse is not true, that is L(e)<L(e') does not
imply e ®e’
• e.g. L(b) > L(e) but b || e

36

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

Lamport logical clocks

• Lamport clock L orders events consistent with
logical “happens before” ordering
• If e → e’, then L(e) < L(e’)

• But not the converse
• L(e) < L(e’) does not imply e → e’

• Similar rules for concurrency
• L(e) = L(e’) implies e║e’ (for distinct e,e’)
• e║e’ does not imply L(e) = L(e’)
• i.e., Lamport clocks arbitrarily order some concurrent

events

37

Total-order Lamport clocks

• Many systems require a total-ordering of events,
not a partial-ordering

• Use Lamport’s algorithm, but break ties using the
process ID
• L(e) = M * Li(e) + i

• M = maximum number of processes
• i = process ID

38

Today's Lecture

• Need for time synchronization

• Time synchronization techniques

• Lamport Clocks

• Vector Clocks

39

Vector Clocks

• Vector clocks overcome the shortcoming of
Lamport logical clocks
• L(e) < L(e’) does not imply e happened before e’

• Goal
• Want ordering that matches causality
• V(e) < V(e’) if and only if e → e’

• Method
• Label each event by vector V(e) [c1, c2 …, cn]

• ci = # events in process i that causally precede e

40

Vector Clock Algorithm

• Initially, all vectors [0,0,…,0]
• For event on process i, increment own ci

• Label message sent with local vector
• When process j receives message with vector

[d1, d2, …, dn]:
• Set local each local entry k to max(ck, dk)
• Increment value of cj

41

Vector Clocks

• At p1
• a occurs at (1,0,0); b occurs at (2,0,0)
• piggyback (2,0,0) on m1

• At p2 on receipt of m1 use max ((0,0,0), (2,0,0)) = (2, 0, 0)
and add 1 to own element = (2,1,0)

• Meaning of =, <=, max etc for vector timestamps
• compare elements pairwise

42

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Vector Clocks

• Note that e ® e’ implies V(e)<V(e’). The converse
is also true

• Can you see a pair of parallel events?
• c || e (parallel) because neither V(c) <= V(e) nor V(e) <= V(c)

43

a b

c d

e f

m1

m2

(2,0,0)(1,0,0)

(2,1,0) (2,2,0)

(2,2,2)(0,0,1)

p1

p2

p3

Physical
time

Clock Sync Important Lessons

• Clocks on different systems will always behave
differently
• Skew and drift between clocks

• Time disagreement between machines can result
in undesirable behavior

• Two paths to solution: synchronize clocks or
ensure consistent clocks

44

Clock Sync Important Lessons

• Clock synchronization
• Rely on a time-stamped network messages
• Estimate delay for message transmission
• Can synchronize to UTC or to local source
• Clocks never exactly synchronized
• Often inadequate for distributed systems
• might need totally-ordered events
• might need very high precision

• Logical Clocks
• Encode causality relationship
• Lamport clocks provide only one-way encoding
• Vector clocks provide exact causality information

45

A baseball example

• Four locations: pitcher’s mound, first base, home plate,
and third base

• Ten events:
e1: pitcher throws ball to home
e2: ball arrives at home
e3: batter hits ball to pitcher
e4: batter runs to first base
e5: runner runs to home
e6: ball arrives at pitcher
e7: pitcher throws ball to first base
e8: runner arrives at home
e9: ball arrives at first base
e10: batter arrives at first base

46

A baseball example

• Pitcher knows e1 happens before e6, which
happens before e7

• Home plate umpire knows e2 is before e3, which
is before e4, which is before e8, …

• Relationship between e8 and e9 is unclear

47

Ways to synchronize

• Send message from first base to home?
• Or to a central timekeeper
• How long does this message take to arrive?

• Synchronize clocks before the game?
• Clocks drift

• million to one => 1 second in 11 days
• Synchronize continuously during the game?

• GPS, pulsars, etc

48

The baseball example revisited

• e1 → e2
• by the message rule

• e1 → e10, because
• e1 → e2, by the message rule
• e2 → e4, by local ordering at home plate
• e4 → e10, by the message rule
• Repeated transitivity of the above relations

• e8║e9, because
• No application of the → rules yields either e8 → e9 or e9

→ e8

49

Lamport on the baseball
example
• Initializing each local clock to 0, we get

L(e1) = 1 (pitcher throws ball to home)
L(e2) = 2 (ball arrives at home)
L(e3) = 3 (batter hits ball to pitcher)
L(e4) = 4 (batter runs to first base)
L(e5) = 1 (runner runs to home)
L(e6) = 4 (ball arrives at pitcher)
L(e7) = 5 (pitcher throws ball to first base)
L(e8) = 5 (runner arrives at home)
L(e9) = 6 (ball arrives at first base)
L(e10) = 7 (batter arrives at first base)

• For our example, Lamport’s algorithm says that
the run scores!

50

Vector clocks on the baseball
example

• Vector: [p,f,h,t]

Event Vector Action
e1 [1,0,0,0] pitcher throws ball to home
e2 [1,0,1,0] ball arrives at home
e3 [1,0,2,0] batter hits ball to pitcher
e4 [1,0,3,0] batter runs to first base)
e5 [0,0,0,1] runner runs to home
e6 [2,0,2,0] ball arrives at pitcher
e7 [3,0,2,0] pitcher throws ball to 1st base
e8 [1,0,4,1] runner arrives at home
e9 [3,1,2,0] ball arrives at first base
e10 [3,2,3,0] batter arrives at first base

51

