
Mutual Exclusion

15-440 Distributed Systems

HW1 due and P1 update

• P1 due date error
• Checkpoint: 10/04
• Part A: 10/13
• Part B: 10/25

• Note that there are 3 separate due dates!

2

Distributed Database

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an
inconsistent state.

(San Francisco) (New York)

(+$100) (+1%)

3

Today's Lecture

• Centralized Mutual Exclusion

• Totally Ordered Multicast

• Distributed Mutual Exclusion

4

Mutual Exclusion

while true:
Perform local operations
Acquire(lock)
Execute critical section
Release(lock)

• Must ensure that only one instance of code is in
critical section

• Whereas multithreaded systems can use shared
memory, we assume that processes can only
coordinate via message passing.

5

Requirements

1. Correctness/Safety: At most one process holds the
lock/enter C.S. at a time

2. Fairness: Any process that makes a request must be
granted lock

• Implies that system must be deadlock-free
• Assumes that no process will hold onto a lock indefinitely
• Eventual fairness: Waiting process will not be excluded

forever
• Bounded fairness: Waiting process will get lock within

some bounded number of cycles (typically n)

6

Other Requirements

1. Low message overhead
2. No bottlenecks
3. Tolerate out-of-order messages
4. Allow processes to join protocol or to drop out
5. Tolerate failed processes
6. Tolerate dropped messages

• Today, will focus on 1-3
• Total number of processes is fixed at n
• No process fails or misbehaves
• Communication never fails, but messages may be delivered

out of order.

7

Mutual Exclusion
A Centralized Algorithm (1)

@ Client à Acquire:
Send (Request, i) to coordinator
Wait for reply

@ Server:
while true:

m = Receive()

If m == (Request, i):
If Available():

Send (Grant) to i

8

Mutual Exclusion
A Centralized Algorithm (2)

@ Server:
while true:

m = Receive()

If m == (Request, i):
If Available():

Send (Grant) to I

else:
Add i to Q

9

Mutual Exclusion
A Centralized Algorithm (3)

@ Server:
while true:

m = Receive()
If m == (Request, i):

If Available():
Send (Grant) to I

else:
Add i to Q

If m == (Release)&&!empty(Q):
Remove ID j from Q
Send (Grant) to j

@ Client à Release:
Send (Release) to coordinator

10

Mutual Exclusion
A Centralized Algorithm (4)
• Correctness:

• Clearly safe
• Fairness depends on queuing policy.

• E.g., if always gave priority to lowest process ID, then
processes 1 & 2 lock out 3

• Performance
• "cycle" is a complete round of the protocol with one process i

entering its critical section and then exiting.
• 3 messages per cycle (1 request, 1 grant, 1 release)
• Lock server creates bottleneck

• Issues
• What happens when coordinator crashes?
• What happens when it reboots?

11

Selecting a Leader (Elections)

• The Bully Algorithm
1. P sends an ELECTION message to all processes with

higher numbers.
2. If no one responds, P wins the election and becomes

coordinator.
3. If one of the higher-ups answers, it takes over. P’s job

is done.

12

The Bully Algorithm (1)

• The bully election algorithm. (a) Process 4 holds an
election. (b) Processes 5 and 6 respond, telling 4 to
stop. (c) Now 5 and 6 each hold an election.

13

The Bully Algorithm (2)

• The bully election algorithm. (d) Process 6 tells 5
to stop. (e) Process 6 wins and tells everyone.

14

A Ring Algorithm

• Election algorithm using a ring.

15

Today's Lecture

• Centralized Mutual Exclusion

• Totally Ordered Multicast

• Distributed Mutual Exclusion

16

Decentralized Algorithm Strawman

• Assume that there are n coordinators
• Access requires a majority vote from m > n/2 coordinators.
• A coordinator always responds immediately to a request with

GRANT or DENY
• Node failures are still a problem

• Coordinators may forget vote on reboot
• What if you get less than m votes?

• Backoff and retry later
• Large numbers of nodes requesting access can affect

availability
• Starvation!

17

Example: Totally-Ordered
Multicasting

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an inconsistent
state.

• Can use Lamport’s to totally order

(San Francisco) (New York)

(+$100) (+1%)

18

Lamport Clock (1)

• Rule 1: Li is incremented by 1 before each event at process pi
• Rule 2:

• (a) when process pi sends message m, it piggybacks t = Li
• (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1

before timestamping the event receive (m)
• Use Lamport’s algorithm, but break ties using the process ID

• L(e) = M * Li(e) + i
• M = maximum number of processes
• i = process ID

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical
time

19

Example: Totally-Ordered
Multicasting

• Can use Lamport’s to totally order
• But would need to be able to roll back events

• Maybe a large number of them!
• Could we make sure things are in the right order before

processing?

(San Francisco) (New York)

(+$100) (+1%)

20

Totally-Ordered Multicast

• A multicast operation by which all messages are
delivered in the same order to each receiver.

• Lamport Details:
• Each message is timestamped with the current logical

time of its sender.
• Multicast messages are also sent back to the sender.
• Assume all messages sent by one sender are

received in the order they were sent and that no
messages are lost.

21

Totally-Ordered Multicast

• Lamport Details (cont):
• Receiving process puts a message into a local queue

ordered according to timestamp.
• The receiver multicasts an ACK to all other processes.
• Only deliver message when it is *both* at the head of

queue and ack’ed by all participants

22

Example: Totally-Ordered
Multicasting

• What are the timestamps of the updates and
ACKs?

(San Francisco) (New York)

(+$100) (+1%)

23

Totally-Ordered Multicast

• Lamport Details (cont):
• Receiving process puts a message into a local queue

ordered according to timestamp.
• The receiver multicasts an ACK to all other processes.
• Only deliver message when it is *both* at the head of

queue and ack’ed by all participants
• Why does this work?

• Key point from Lamport: the timestamp of the received
message is lower than the timestamp of the ACK.

• All processes will eventually have the same copy of the
local queue à consistent global ordering.

24

Today's Lecture

• Centralized Mutual Exclusion

• Totally Ordered Multicast

• Distributed Mutual Exclusion

25

A Distributed Algorithm
(Lamport Mutual Exclusion)
• Every process maintains a queue of pending requests for

entering critical section in order. The queues are ordered
by virtual time stamps derived from Lamport timestamps
• For any events e, e' such that e à e' (causality ordering), T(e) <

T(e')
• For any distinct events e, e', T(e) != T(e')

• When node i wants to enter C.S., it sends time-stamped
request to all other nodes (including itself)
• Wait for replies from all other nodes.
• If own request is at the head of its queue and all replies have been

received, enter C.S.
• Upon exiting C.S., remove its request from the queue and send a

release message to every process.

26

A Distributed Algorithm

• Other nodes:
• After receiving a request, enter the request in its own

request queue (ordered by time stamps) and reply with
a time stamp.
• This reply is unicast unlike the Lamport totally order

multicast example. Why?
• Only the requester needs to know the message is ready to

commit.
• Release messages are broadcast to let others to move on

• After receiving release message, remove the
corresponding request from its own request queue.

• If own request is at the head of its queue and all replies
have been received, enter C.S.

27

A Distributed Algorithm

• Correctness
• When process x generates request with time stamp Tx, and it has

received replies from all y in Nx, then its Q contains all requests
with time stamps <= Tx.

• Performance
• Process i sends n-1 request messages
• Process i receives n-1 reply messages
• Process i sends n-1 release messages.

• Issues
• What if node fails?
• Performance compared to centralized
• What about message reordering?

28

A Distributed Algorithm (take 2)
(Ricart & Agrawala)

• Also relies on Lamport totally ordered clocks.

• When node i wants to enter C.S., it sends time-
stamped request to all other nodes. These other
nodes reply (eventually). When i receives n-1
replies, then can enter C.S.

• Trick: Node j having earlier request doesn't reply
to i until after it has completed its C.S.

29

A Distributed Algorithm

Three different cases:

1.If the receiver is not accessing the resource and does not
want to access it, it sends back an OK message to the
sender.

2.If the receiver already has access to the resource, it simply
does not reply. Instead, it queues the request.

3.If the receiver wants to access the resource as well but has
not yet done so, it compares the timestamp of the incoming
message with the one contained in the message that it has
sent everyone. The lowest one wins.

30

A Distributed Algorithm

• Two processes (0 and 2) want to access a
shared resource at the same moment.

31

A Distributed Algorithm

• Process 0 has the lowest timestamp, so it wins.

32

A Distributed Algorithm (4)

• When process 0 is done, it sends an OK also, so
2 can now go ahead.

33

Correctness

• Look at nodes A & B. Suppose both are allowed to be in
their critical sections at same time.
• A must have sent message (Request, A, Ta) & gotten reply (Reply,

A).
• B must have sent message (Request, B, Tb) & gotten reply (Reply,

B).

• Case 1: One received request before other sent request.
• E.g., B received (Request, A, Ta) before sending (Request, B, Tb).

Then would have Ta < Tb. A would not have replied until after
leaving its C.S.

• Case 2: Both sent requests before receiving others
request.
• But still, Ta & Tb must be ordered. Suppose Ta < Tb. Then A

would not sent reply to B until after leaving its C.S.

34

Deadlock Free

• Cannot have cycle where each node waiting for
some other

• Consider two-node case: Nodes A & B are
causing each other to deadlock.
• This would result if A deferred reply to B & B deferred

reply to A, but this would require both Ta < Tb & Tb <
Ta.

• For general case, would have set of nodes A, B,
C, ..., Z, such that A is holding deferred reply to B,
B to C, ... Y to Z, and Z to A.This would require Ta
< Tb < ... < Tz < Ta, which is not possible.

35

Starvation Free

• If node makes request, it will be granted
eventually

• Claim: If node A makes a request with time stamp
Ta, then eventually, all nodes will have their local
clocks > Ta.

• Justification: From the request onward, every
message A sends will have time stamp > Ta.
• All nodes will update their local clocks upon receiving

those messages.
• So, eventually, A's request will have a lower time stamp

than anyother node's request, and it will be granted.
36

Performance

• Each cycle involves 2(n-1) messages
• n-1 requests by I
• n-1 replies to I

• Issues
• What if node fails?
• Performance compared to centralized

37

A Token Ring Algorithm

• Organize the processes involved into a logical ring
• One token at any time à passed from node to

node along ring

38

A Token Ring Algorithm

• Correctness:
• Clearly safe: Only one process can hold token

• Fairness:
• Will pass around ring at most once before getting

access.
• Performance:

• Each cycle requires between 1 - ∞ messages
• Latency of protocol between 0 & n-1

• Issues
• Lost token

39

A Comparison of the Four
Algorithms

• What happens with crashes?

40

Summary

• Lamport algorithm demonstrates how distributed
processes can maintain consistent replicas of a
data structure (the priority queue).

• Ricart & Agrawala's algorithms demonstrate utility
of logical clocks.

• Centralized & ring based algorithms much lower
message counts

• None of these algorithms can tolerate failed
processes or dropped messages.

41

Ricart & Agrawala Example

• Processes 1, 2, 3. Create totally ordered clocks
by having process ID compute timestamp of form
T(e) = 10*L(e)+id, where L(e) is a regular Lamport
clock.

• Initial timestamps à P1: 421, P2: 112, P3: 143

• Action types:
• R m: Receive message m
• B m: Broadcast message m to all other processes
• S m to j: Send message m to process j

42

Timeline

Process T1 T2 T3 Action
3 153 B	(Request,	3,	153)
2 162 R	(Request,	3,	153)
1 431 R	(Request,	3,	153)
1 441 S	(Reply,	1)	to	3
2 172 S	(Reply,	2)	to	3
3 453 R	(Reply,	1)
3 463 R	(Reply,	2)
3 473 Enter	critical	section
1 451 B	(Request,	1,	451)
2 182 B	(Request,	2,	182)
3 483 R	(Request,	1,	451)
3 493 R	(Request,	2,	182)
1 461 R	(Request,	2,	182)
2 462 R	(Request,	1,	451)	#	2	has	D	=	{1}
1 471 S	(Reply,	1)	to	2	#	2	has	higher	priority
2 482 R	(Reply,	1)
3 503 S	(Reply,	3)	to	1	#	Release	lock
3 513 S	(Reply,	3)	to	2
1 511 R	(Reply,	3)						#	1	has	R	=	{2}
2 522 R	(Reply,	3)						#	2	has	R	=	{}
2 532 Enter	critical	section
2 542 S	(Reply,	2)	to	1	#	Release	lock
1 551 R	(Reply,	2)						#	1	has	R	=	{}
1 561 Enter	critical	section

43

Overall Flow in Example

• P1 and P2 compete for lock after it is released by
P3.

• P1's request has timestamp 451, while P2's
request has timestamp 182.

• P2 defers reply to P1, but P1 replies to P2
immediately.

• This allows P2 to proceed ahead of P1.

44

