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HW1 due and P1 update

• P1 due date error
• Checkpoint: 10/04 
• Part A: 10/13 
• Part B: 10/25

• Note that there are 3 separate due dates!
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Distributed Database

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an 
inconsistent state.

(San Francisco) (New York)

(+$100) (+1%)
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Today's Lecture

• Centralized Mutual Exclusion

• Totally Ordered Multicast

• Distributed Mutual Exclusion
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Mutual Exclusion

while true:      
Perform local operations      
Acquire(lock)      
Execute critical section      
Release(lock)

• Must ensure that only one instance of code is in 
critical section

• Whereas multithreaded systems can use shared 
memory, we assume that processes can only 
coordinate via message passing.
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Requirements

1. Correctness/Safety: At most one process holds the 
lock/enter C.S. at a time

2. Fairness: Any process that makes a request must be 
granted lock  

• Implies that system must be deadlock-free 
• Assumes that no process will hold onto a lock indefinitely   
• Eventual fairness: Waiting process will not be excluded 

forever   
• Bounded fairness: Waiting process will get lock within 

some bounded number of cycles (typically n)
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Other Requirements

1. Low message overhead   
2. No bottlenecks   
3. Tolerate out-of-order messages   
4. Allow processes to join protocol or to drop out   
5. Tolerate failed processes   
6. Tolerate dropped messages

• Today, will focus on 1-3
• Total number of processes is fixed at n
• No process fails or misbehaves
• Communication never fails, but messages may be delivered 

out of order.
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Mutual Exclusion
A Centralized Algorithm (1)

@ Client à Acquire: 
Send (Request, i) to coordinator 
Wait for reply

@ Server:
while true:      

m = Receive()      

If m == (Request, i):
If Available():

Send (Grant) to i
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Mutual Exclusion
A Centralized Algorithm (2)

@ Server:
while true:      

m = Receive()      

If m == (Request, i):
If Available():

Send (Grant) to I

else:
Add i to Q
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Mutual Exclusion
A Centralized Algorithm (3)

@ Server:
while true:      

m = Receive()      
If m == (Request, i):

If Available():
Send (Grant) to I

else:
Add i to Q

If m == (Release)&&!empty(Q):
Remove ID j from Q
Send (Grant) to j

@ Client à Release: 
Send (Release) to coordinator 
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Mutual Exclusion
A Centralized Algorithm (4)
• Correctness:

• Clearly safe
• Fairness depends on queuing policy.  

• E.g., if always gave priority to lowest process ID, then 
processes 1 & 2 lock out 3

• Performance
• "cycle" is a complete round of the protocol with one process i

entering its critical section and then exiting.
• 3 messages per cycle (1 request, 1 grant, 1 release)
• Lock server creates bottleneck

• Issues
• What happens when coordinator crashes?
• What happens when it reboots?
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Selecting a Leader (Elections)

• The Bully Algorithm
1. P sends an ELECTION message to all processes with 

higher numbers.
2. If no one responds, P wins the election and becomes 

coordinator.
3. If one of the higher-ups answers, it takes over. P’s job 

is done.
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The Bully Algorithm (1)

• The bully election algorithm. (a) Process 4 holds an 
election. (b) Processes 5 and 6 respond, telling 4 to 
stop. (c) Now 5 and 6 each hold an election.
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The Bully Algorithm (2)

• The bully election algorithm.  (d) Process 6 tells 5 
to stop. (e) Process 6 wins and tells everyone.
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A Ring Algorithm

• Election algorithm using a ring.
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Today's Lecture

• Centralized Mutual Exclusion

• Totally Ordered Multicast

• Distributed Mutual Exclusion
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Decentralized Algorithm Strawman

• Assume that there are n coordinators
• Access requires a majority vote from m > n/2 coordinators. 
• A coordinator always responds immediately to a request with 

GRANT or DENY
• Node failures are still a problem

• Coordinators may forget vote on reboot
• What if you get less than m votes?

• Backoff and retry later
• Large numbers of nodes requesting access can affect 

availability
• Starvation!
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Example: Totally-Ordered 
Multicasting

• San Fran customer adds $100, NY bank adds 1% interest
• San Fran will have $1,111 and NY will have $1,110

• Updating a replicated database and leaving it in an inconsistent 
state.

• Can use Lamport’s to totally order

(San Francisco) (New York)

(+$100) (+1%)
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Lamport Clock (1)

• Rule 1: Li  is incremented by 1 before each event at process pi 
• Rule 2: 

• (a) when process pi sends message m, it piggybacks t =  Li 
• (b) when pj receives (m,t) it sets Lj := max(Lj, t) and applies rule 1 

before timestamping the event receive (m)
• Use Lamport’s algorithm, but break ties using the process ID

• L(e) = M * Li(e) + i
• M = maximum number of processes
• i = process ID

a b

c d

e f

m1

m2

21

3 4

51

p1

p2

p3

Physical 
time
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Example: Totally-Ordered 
Multicasting

• Can use Lamport’s to totally order
• But would need to be able to roll back events

• Maybe a large number of them!
• Could we make sure things are in the right order before 

processing?

(San Francisco) (New York)

(+$100) (+1%)
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Totally-Ordered Multicast

• A multicast operation by which all messages are 
delivered in the same order to each receiver.

• Lamport Details:
• Each message is timestamped with the current logical 

time of its sender.
• Multicast messages are also sent back to the sender.
• Assume all messages sent by one sender are 

received in the order they were sent and that no 
messages are lost.

21



Totally-Ordered Multicast

• Lamport Details (cont):
• Receiving process puts a message into a local queue 

ordered according to timestamp.
• The receiver multicasts an ACK to all other processes.
• Only deliver message when it is *both* at the head of 

queue and ack’ed by all participants
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Example: Totally-Ordered 
Multicasting

• What are the timestamps of the updates and 
ACKs?

(San Francisco) (New York)

(+$100) (+1%)
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Totally-Ordered Multicast

• Lamport Details (cont):
• Receiving process puts a message into a local queue 

ordered according to timestamp.
• The receiver multicasts an ACK to all other processes.
• Only deliver message when it is *both* at the head of 

queue and ack’ed by all participants
• Why does this work?

• Key point from Lamport: the timestamp of the received 
message is lower than the timestamp of the ACK.

• All processes will eventually have the same copy of the 
local queue à consistent global ordering.
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Today's Lecture

• Centralized Mutual Exclusion

• Totally Ordered Multicast

• Distributed Mutual Exclusion
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A Distributed Algorithm
(Lamport Mutual Exclusion)
• Every process maintains a queue of pending requests for 

entering critical section in order. The queues are ordered 
by virtual time stamps derived from Lamport timestamps
• For any events e, e' such that e à e' (causality ordering), T(e) < 

T(e')
• For any distinct events e, e', T(e) != T(e')

• When node i wants to enter C.S., it sends time-stamped 
request to all other nodes (including itself)
• Wait for replies from all other nodes.
• If own request is at the head of its queue and all replies have been 

received, enter C.S.
• Upon exiting C.S., remove its request from the queue and send a 

release message to every process.

26



A Distributed Algorithm

• Other nodes:
• After receiving a request, enter the request in its own 

request queue (ordered by time stamps) and reply with 
a time stamp.
• This reply is unicast unlike the Lamport totally order 

multicast example. Why?
• Only the requester needs to know the message is ready to 

commit. 
• Release messages are broadcast to let others to move on

• After receiving release message, remove the 
corresponding request from its own request queue.

• If own request is at the head of its queue and all replies 
have been received, enter C.S.
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A Distributed Algorithm

• Correctness
• When process x generates request with time stamp Tx, and it has 

received replies from all y in Nx, then its Q contains all requests 
with time stamps <= Tx.

• Performance
• Process i sends n-1 request messages
• Process i receives n-1 reply messages
• Process i sends n-1 release messages.

• Issues
• What if node fails?
• Performance compared to centralized
• What about message reordering?
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A Distributed Algorithm (take 2)
(Ricart & Agrawala)

• Also relies on Lamport totally ordered clocks. 

• When node i wants to enter C.S., it sends time-
stamped request to all other nodes.  These other 
nodes reply (eventually).  When i receives n-1 
replies, then can enter C.S.

• Trick: Node j having earlier request doesn't reply 
to i until after it has completed its C.S.
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A Distributed Algorithm

Three different cases:

1.If the receiver is not accessing the resource and does not 
want to access it, it sends back an OK message to the 
sender.

2.If the receiver already has access to the resource, it simply 
does not reply. Instead, it queues the request.

3.If the receiver wants to access the resource as well but has 
not yet done so, it compares the timestamp of the incoming 
message with the one contained in the message that it has 
sent everyone. The lowest one wins. 
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A Distributed Algorithm

• Two processes (0 and 2) want to access a 
shared resource at the same moment. 
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A Distributed Algorithm

• Process 0 has the lowest timestamp, so it wins. 
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A Distributed Algorithm (4)

• When process 0 is done, it sends an OK also, so 
2 can now go ahead.
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Correctness

• Look at nodes A & B.  Suppose both are allowed to be in 
their critical sections at same time.
• A must have sent message (Request, A, Ta) & gotten reply (Reply, 

A).  
• B must have sent message (Request, B, Tb) & gotten reply (Reply, 

B).  

• Case 1: One received request before other sent request.    
• E.g., B received (Request, A, Ta) before sending (Request, B, Tb).     

Then would have Ta < Tb.  A would not have replied until after     
leaving its C.S.

• Case 2: Both sent requests before receiving others 
request.     
• But still, Ta & Tb must be ordered.  Suppose Ta < Tb.  Then A     

would not sent reply to B until after leaving its C.S.
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Deadlock Free

• Cannot have cycle where each node waiting for 
some other

• Consider two-node case: Nodes A & B are 
causing each other to deadlock.  
• This would result if A deferred reply to B & B deferred 

reply to A, but this would require both Ta < Tb & Tb < 
Ta.

• For general case, would have set of nodes A, B, 
C, ..., Z, such that A is holding deferred reply to B, 
B to C, ... Y to Z, and Z to A.This would require Ta 
< Tb < ... < Tz < Ta, which is not possible.
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Starvation Free

• If node makes request, it will be granted 
eventually

• Claim: If node A makes a request with time stamp 
Ta, then eventually, all nodes will have their local 
clocks > Ta.

• Justification: From the request onward, every 
message A sends will have time stamp > Ta.  
• All nodes will update their local clocks upon receiving 

those messages.
• So, eventually, A's request will have a lower time stamp 

than anyother node's request, and it will be granted.
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Performance

• Each cycle involves 2(n-1) messages
• n-1 requests by I
• n-1 replies to I

• Issues
• What if node fails?
• Performance compared to centralized
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A Token Ring Algorithm

• Organize the processes involved into a logical ring
• One token at any time à passed from node to 

node along ring
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A Token Ring Algorithm

• Correctness:
• Clearly safe: Only one process can hold token

• Fairness: 
• Will pass around ring at most once before getting 

access.
• Performance:

• Each cycle requires between 1 - ∞ messages
• Latency of protocol between 0 & n-1

• Issues
• Lost token
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A Comparison of the Four 
Algorithms

• What happens with crashes?
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Summary

• Lamport algorithm demonstrates how distributed 
processes can maintain consistent replicas of a 
data structure (the priority queue).

• Ricart & Agrawala's algorithms demonstrate utility 
of logical clocks.

• Centralized & ring based algorithms much lower 
message counts

• None of these algorithms can tolerate failed 
processes or dropped messages.
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Ricart & Agrawala Example

• Processes 1, 2, 3.  Create totally ordered clocks 
by having process ID compute timestamp of form 
T(e) = 10*L(e)+id, where L(e) is a regular Lamport
clock.

• Initial timestamps à P1: 421, P2: 112, P3: 143

• Action types:
• R m: Receive message m
• B m: Broadcast message m to all other processes
• S m to j: Send message m to process j
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Timeline

Process T1 T2 T3 Action
3 153 B	(Request,	3,	153)
2 162 R	(Request,	3,	153)
1 431 R	(Request,	3,	153)
1 441 S	(Reply,	1)	to	3
2 172 S	(Reply,	2)	to	3
3 453 R	(Reply,	1)
3 463 R	(Reply,	2)
3 473 Enter	critical	section
1 451 B	(Request,	1,	451)
2 182 B	(Request,	2,	182)
3 483 R	(Request,	1,	451)
3 493 R	(Request,	2,	182)
1 461 R	(Request,	2,	182)
2 462 R	(Request,	1,	451)	#	2	has	D	=	{1}
1 471 S	(Reply,	1)	to	2	#	2	has	higher	priority
2 482 R	(Reply,	1)
3 503 S	(Reply,	3)	to	1	#	Release	lock
3 513 S	(Reply,	3)	to	2
1 511 R	(Reply,	3)						#	1	has	R	=	{2}
2 522 R	(Reply,	3)						#	2	has	R	=	{}
2 532 Enter	critical	section
2 542 S	(Reply,	2)	to	1	#	Release	lock
1 551 R	(Reply,	2)						#	1	has	R	=	{}
1 561 Enter	critical	section
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Overall Flow in Example

• P1 and P2 compete for lock after it is released by
P3.

• P1's request has timestamp 451, while P2's 
request has timestamp 182.

• P2 defers reply to P1, but P1 replies to P2 
immediately.  

• This allows P2 to proceed ahead of P1.
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