
GFS / HDFS / Spanner

15-440 Distributed Systems



Agenda

• Google File System (GFS)
• Hadoop Distributed File System (HDFS)

• Distributed File Systems
• Replication

• Spanner
• Distributed Database System
• Paxos
• Replication

• Colossus (GFS v2)
2



GFS Motivation

• Google applications exercise specific read / write 
patterns (Gmail, YouTube, etc.)

• General purpose file systems (like Ext4, NTFS, 
etc.) are not designed to exploit specific 
workloads

• POSIX API (standard for file system 
communication) is an overkill for specific 
applications and their requirements

• Solution – design your own storage system
• GFS is a distributed fault-tolerant file system

3



4

GFS Operation Environment



5



6

GFS Operation Environment

• Hundreds of thousands of commodity servers
• Millions of commodity disks
• Failures are normal (expected):

• App bugs, OS bugs
• Human error
• Disk failure, memory failure, net failure, power supply 

failure
• Connector failure

• Huge number of concurrent readers / writers



GFS Workload Assumptions

• (Relatively) Small (in the millions) # of large files
• Large files are >= 100 MB in size (multi-GB files 

common)
• Large, streaming reads (>= 1 MB in size)
• Large, sequential writes that append
• Concurrent appends by multiple clients (e.g., 

producer-consumer queues)

7



GFS Design Aims

• Maintain data and system availability
• Handle failures gracefully and transparently
• Low synchronization overhead between entities of 

GFS
• Exploit parallelism of numerous entities
• Ensure high sustained throughput over low 

latency for individual reads / writes

8



9

GFS Context

YouTube Gmail Search

GFS



GFS Architecture

10



GFS Architecture

• One master server (state replicated on backups)
• Many chunk servers (100s – 1000s)

• Spread across racks; intra-rack b/w greater than inter-
rack

• Chunk: 64 MB portion of file, identified by 64-bit, 
globally unique ID

• Many clients accessing same and different files 
stored on same cluster

11



GFS Architecture Master Server

• Holds all metadata:
• Namespace (directory hierarchy)
• Access control information (per-file)
• Mapping from files to chunks
• Current locations of chunks (chunkservers)

• Delegates consistency management
• Garbage collects orphaned chunks
• Migrates chunks between chunkservers

• Why is migration needed?

12

Holds all metadata in RAM; very fast 
operations on file system metadata



GFS Architecture Chunkserver

• Stores 64 MB file chunks on local disk using standard Linux 
filesystem (like Ext4), each with version number and 
checksum
• What is the traditional file system chunk / block size?
• Why 64 MB?

• Has no understanding of overall file system (just deals with 
chunks)

• Read/write requests specify chunk handle and byte range
• Chunks replicated on configurable number of chunkservers

(default: 3)
• No caching of file data (beyond standard Linux buffer 

cache)
• Send periodic heartbeats to Master

13



GFS Architecture File Layout

14



GFS Architecture Client

• Issues control (metadata) requests to master 
server

• Issues data requests directly to chunkservers
• This exploits parallelism and reduces master bottleneck

• Caches metadata
• Does no caching of data

• No consistency difficulties among clients
• Streaming reads (read once) and append writes (write 

once) don’t benefit much from caching at client

15



GFS Architecture Client

• No file system interface at the operating-system level 
(e.g., under the VFS layer
• User-level API is provided
• Does not support all the features of POSIX file system 

access – but looks familiar (i.e. open, close, read…)

• Two special operations are supported. 
• Snapshot: is an efficient way of creating a copy of the 

current instance of a file or directory tree. 
• Append: allows a client to append data to a file as an atomic 

operation without having to lock a file. Multiple processes 
can append to the same file concurrently without fear of 
overwriting one another’s data

16



GFS Working Client Read

• Client sends master:
• read(file name, chunk index)

• Master’s reply:
• chunk ID, chunk version number, locations of replicas

• Client sends “closest” chunkserver w/replica:
• read(chunk ID, byte range)
• “Closest” determined by IP address on simple rack-

based network topology
• Chunkserver replies with data

17



GFS Working Client Write

• 3 replicas for each block à must write to all
• When block created, Master decides placements

• Default: two within single rack, third on a different rack 
• Why?

• Access time / safety tradeoff 

18



GFS Working Client Write

• Some chunkserver is primary for each chunk
• Master grants lease to primary (typically for 60 sec.)
• Leases renewed using periodic heartbeat messages 

between master and chunkservers
• Client asks master for primary and secondary 

replicas for each chunk
• Client sends data to replicas in daisy chain

• Pipelined: each replica forwards as it receives
• Takes advantage of full-duplex Ethernet links

19



GFS Working Client Write

20

Send to closest 
replica first



GFS Working Client Write

• All replicas acknowledge data write to client
• Don’t write to file à just get the data

• Client sends write request to primary (commit phase)
• Primary assigns serial number to write request, 

providing ordering
• Primary forwards write request with same serial 

number to secondary replicas
• Secondary replicas all reply to primary after 

completing writes in the same order
• Primary replies to client

21



GFS Working Client Record 
Append

• Google uses large files as queues between 
multiple producers and consumers

• Same control flow as for writes, except…
• Client pushes data to replicas of last chunk of file
• Client sends request to primary
• Common case: request fits in current last chunk:

• Primary appends data to own replica
• Primary tells secondaries to do same at same byte 

offset in theirs
• Primary replies with success to client

22



GFS Working Client Record 
Append

• When data won’t fit in last chunk:
• Primary fills current chunk with padding
• Primary instructs other replicas to do same
• Primary replies to client, “retry on next chunk”

• If record append fails at any replica, client retries 
operation
• So replicas of same chunk may contain different data—

even duplicates of all or part of record data

• What guarantee does GFS provide on success?
• Data written at least once in atomic unit

23



GFS Working File Deletion

• When client deletes file:
• Master records deletion in its log
• File renamed to hidden name including deletion 

timestamp
• Master scans file namespace in background:

• Removes files with such names if deleted for longer 
than 3 days (configurable)

• In-memory metadata erased

• Master scans chunk namespace in background:
• Removes unreferenced chunks from chunkservers

24



GFS Working Logging at Master

• Master has all metadata information
• Lose it, and you’ve lost the filesystem!

• Master logs all client requests to disk sequentially
• Replicates log entries to remote backup servers
• Only replies to client after log entries safe on disk 

on self and backups!
• Logs cannot be too long – why?
• Periodic checkpoints as an on-disk Btree

25



GFS Working Chunk Leases and 
Version Numbers

• If no outstanding lease when client requests write, 
master grants new one

• Chunks have version numbers
• Stored on disk at master and chunkservers
• Each time master grants new lease, increments 

version, informs all replicas
• Master can revoke leases

• e.g., when client requests rename or snapshot of file

26



GFS Consistency Model

• Changes to namespace (i.e., metadata) are 
atomic
• Done by single master server!
• Master uses log to define global total order of 

namespace-changing operations

27



GFS Consistency Model

• Changes to data are ordered as chosen by a 
primary
• But multiple writes from the same client may be 

interleaved or overwritten by concurrent operations 
from other clients

• Record append completes at least once, at 
offset of GFS’s choosing
• Applications must cope with possible duplicates

• Failures can cause inconsistency
• Behavior is worse for writes than appends

28



GFS Fault Tolerance (Master)

• Replays log from disk
• Recovers namespace (directory) information
• Recovers file-to-chunk-ID mapping (but not location of 

chunks)
• Asks chunkservers which chunks they hold

• Recovers chunk-ID-to-chunkserver mapping
• If chunk server has older chunk, it’s stale

• Chunk server down at lease renewal
• If chunk server has newer chunk, adopt its version 

number
• Master may have failed while granting lease

29



GFS Fault Tolerance 
(Chunkserver)

• Master notices missing heartbeats
• Master decrements count of replicas for all chunks 

on dead chunkserver
• Master re-replicates chunks missing replicas in 

background
• Highest priority for chunks missing greatest number of 

replicas

30



GFS Limitations

• Security?
• Trusted environment, trusted users
• But that doesn’t stop users from interfering with each 

other…
• Does not mask all forms of data corruption

• Requires application-level checksum

31



GFS Limitations

• Master biggest impediment to scaling
• Performance bottleneck 
• Holds all data structures in memory 
• Takes long time to rebuild metadata 
• Must vulnerable point for reliability 
• Solution: 

• Have systems with multiple master nodes, all sharing set 
of chunk servers. 

• Not a uniform name space. 
• Large chunk size. 

• Can’t afford to make smaller, since this would create more 
work for master. 

32



GFS Summary

• Success: used actively by Google to support search service and 
other applications
• Availability and recoverability on cheap hardware
• High throughput by decoupling control and data
• Supports massive data sets and concurrent appends

• Semantics not transparent to apps
• Must verify file contents to avoid inconsistent regions, repeated appends 

(at-least-once semantics)
• Performance not good for all apps

• Assumes read-once, write-once workload (no client caching!)

• Replaced in 2010 by Colossus 
• Eliminate master node as single point of failure
• Targets latency problems due to more latency sensitive applications
• Reduce block size to be between 1~8 MB
• Few details public L

33



HDFS



HDFS

35

Hmm… looks 
familiar



GFS vs. HDFS

GFS HDFS 
Master NameNode
chunkserver DataNode
operation log journal, edit log 
chunk block 
random file writes possible only append is possible 
multiple writer, multiple reader 
model 

single writer, multiple reader model 

chunk: 64KB data and 32bit 
checksum pieces 

per HDFS block, two files created 
on a DataNode: data file & 
metadata file (checksums, 
timestamp)

default block size: 64MB default block size: 128MB

36



Spanner



Spanner

38

• Spanner is a scalable globally-distributed 
database system.

• Replication is used for global availability and 
geographic locality.

• Why do you need Spanner when you have GFS?
• Transactions - Google argues that it is better to have 

application programmers deal with performance 
problems due to overuse of transactions as bottlenecks 
arise, rather than always coding around the lack of 
transactions.



Spanner Operation Environment

39

• Replication across continents
• Data is sharded 1000s of ways within each data 

center
• Paxos state machines used across the world 

manage the sharded data
• Why is Paxos needed in a database system?

• Expected to operate using million of machines 
across hundreds of data centers containing 
trillions of rows



Spanner Motivation

40

• Applications requiring
• complex, evolving schemas
• strong consistency in wide-area replication
• high availability in wide-area natural disasters
• fine grained control over data replication and location

• SQL like interface to query data
• Since Dremel (an interactive data analysis tool) was 

very popular



Spanner Deployment

41



Spanner Deployment

42

• Spanner deployment is called universe
• Zone is the unit of administrative deployment and 

physical isolation (i.e. different data centers will be 
in different zones)

• 100 to 1000s of spanservers in each zone



Spanserver Architecture

43



Spanserver Architecture

44

• 100 – 1000 BigTable tablets at the lowest layer 
writing to Colossus (successor to GFS)

• Atop each tablet runs a Paxos state machine
• Collection of Paxos state machines is called a 

Paxos Group and every Paxos Group has a 
leader

• Leader implements the lock table to maintain the 
2-phase locking state



Spanner Directories

45

• Spanner is essentially a glorified hash map
• A directory is a bucket of contiguous keys that 

share a common prefix
• A directory is the unit of data placement in 

Spanner
• It is also the smallest unit whose replication and 

geographic location settings can be customized



Spanner Concurrency Control

46

• Key aspect of differentiating Spanner – using 
globally meaningful timestamps for distributed 
transactions in achieving external consistency

t
T1: s1

start commit

s1: Timestamp



Spanner TrueTime API

47

TT.now() – TTInterval: [earliest, latest]
(Why is time an interval and not a specific instant?)
TT.after(t) – true if t has definitely passed
TT.before(t) – true if t has definitely not arrived

earliest latest

TT.now()

2*ε

time

TT.after(t) = true TT.before(t) = true

“Global wall-clock time” with bounded uncertainty



Spanner Commit Wait

48

average ε
Commit Wait

time

average ε

Pick s = 
TT.now().latest

Acquired locks Release locks

Wait until 
TT.now().earliest > s

s

T

Why do you need to wait for TT.now().earliest > s before 
releasing locks?



Spanner External Consistency

49

• If a transaction T1 commits before another 
transaction T2 starts, then T1's commit timestamp 
is smaller than T2

• Similar to how we reason with wall-clock time

t
T1: s1

start commit

t
T1: s1

start commit

T2: s2 T2: s2

s1 < s2 s1 < s2



Summary

• GFS / HDFS
• Data-center customized API, optimizations
• Append focused DFS
• Separate control (filesystem) and data (chunks)
• Replication and locality
• Rough consistency à apps handle rest

• Spanner
• Globally consistent replicated database system
• Implements distributed transactions
• Lock-free reads and Paxos based writes
• Implements external consistency using TrueTime API
• Able to survive data center wipeouts

50



Colossus of today



Distributed File System Allocation

• Data centers consist of millions of disks
• All of them not added at the same time
• Advances in technology à larger capacity disks

• Kryder’s Law

• Disk speeds don’t increase at the rate of capacity
• Disk capacity agnostic allocation algorithms result 

in hot-spots and thus bottlenecks
• What are hot-spots?

52



Multidimensional Bin-packing

• Data can be categorized by temperature
• Hot data is data read / written frequently
• Cold data is data rarely read / written

• Smarter allocation algorithms can be devised 
keeping heat and disk capacity in mind

• Essentially bin-packing as per multiple criteria

53


