15-440 Distributed Systems

Errors and Failures

Types of Errors “

* Hard errors: The component is dead.

« Soft errors: A signal or bit is wrong, but it doesn’t
mean the component must be faulty

* Note: You can have recurring soft errors due to
faulty, but not dead, hardware

Examples

* DRAM errors

"«

» Hard errors: Often caused by motherboard - faulty

traces, bad solder, etc.

+ Soft errors: Often caused by cosmic radiation or alpha
particles (from the chip material itself) hitting memory
cell, changing value. (Remember that DRAM is just
little capacitors to store charge... if you hit it with

radiation, you can add charge to it.)

Some fun #s “

» Both Microsoft and Google have recently started
to identify DRAM errors as an increasing
contributor to failures... Google in their
datacenters, Microsoft on your desktops.

+ We've known hard drives fail
+ Especially when students need to hand in HW/projects

)

E.g., See “DRAM Errors in the Wild: A Large-
Scale Field Study”

Replacement Rates “

HPC1 comM1 COM2

Component % Component % Component %

Hard drive 30.6 Power supply 34.8 Hard drive 49.1
Memory 28.5 Memory 20.1 Motherboard 234
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 11.4 RAID card 4.1

motherboard 4.9 Fan 8 Memory 3.4

Controller 29 CPU 2 SCSI cable 2.2

QsSw 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

From “Disk failures in the real world: What does an
MTTF of 1,000,000 hours mean to you?”

HPC1 is a five year log of hardware replacements collected from a 765 node high-
performance computing cluster. Each of the 765 nodes is a 4-way SMP with 4 GB of
memory and three to four 18GB 10K rpm SCSI drives.

COM1 is a log of hardware failures recorded by an internet service provider. data
covers a population of 26,734 10K rpm SCSI disk drives

COM2 is a warranty service log of hardware failures recorded on behalf of an
internet service provider aggregating events in multiple distributed sites. The size of
the underlying system changed significantly during the measurement period,
starting with 420 servers in 2004 and ending with 9,232 servers in 2006.

Measuring Availability €W,

« Mean time to failure (MTTF)
« Mean time to repair (MTTR)
« MTBF =MTTF + MTTR

* Availability = MTTF / (MTTF + MTTR)

+ Suppose OS crashes once per month, takes 10min to
reboot.

* MTTF =720 hours = 43,200 minutes
MTTR = 10 minutes

+ Availability = 43200 / 43210 = 0.997 (~“3 nines”)

Availability

Availability %

90% ("one nine")
95%

97%

98%

99% ("two nines")
99.50%

99.80%

99.9% ("three nines")
99.95%

99.99% ("four nines")
99.999% ("five nines")

99.9999% ("six nines")
99.99999% ("seven nines")

Downtime
per year

36.5 days
18.25 days
10.96 days
7.30 days
3.65 days
1.83 days
17.52 hours
8.76 hours
4.38 hours
52.56 minutes
5.26 minutes
31.5 seconds
3.15 seconds

Downtime per
month*
72 hours
36 hours
21.6 hours
14.4 hours
7.20 hours
3.60 hours
86.23 minutes
43.8 minutes
21.56 minutes
4.32 minutes
25.9 seconds
2.59 seconds
0.259 seconds

"«

Downtime per

week

16.8 hours

8.4 hours

5.04 hours

3.36 hours

1.68 hours

50.4 minutes

20.16 minutes

10.1 minutes

5.04 minutes

1.01 minutes

6.05 seconds

0.605 seconds

0.0605 seconds

Availability in practice

Carrier airlines (2002 FAA fact book)

* 41 accidents, 6.7M departures

+ 99.9993% availability

911 Phone service (1993 NRIC report)
* 29 minutes per line per year

* 99.994%

Standard phone service (various sources)
« 53+ minutes per line per year

* 99.99+%

End-to-end Internet Availability

* 95% - 99.6%

"«

Real Devices

-

Cheetah 15K 4

Mairsteam enterprise disc drive

M gt

"«

Real Devices — the small print “.

delvering maximum I0PS with fzwer drives 1o yield lower TCO.

« The Cheetah 15K.4 price-per-performancs value united with the breakthrough bensdits
of senal attached SCSI {SAS) make it the optimal 3.5-inch drive for rock solid
enferpnise storage.

« Proactive, self-initiatad background management functions impeove media intagrity,
Increase drive efficiency, reduce incidence of integration failures and improve
fizld relability.

« The Cheetah 15K.4 shares its clectronics architecture and firmware base with
Cheetzh 10K.7 and Sawvio " to ensure greater factory consistency and reducad
time o market,

KEY SPECIFICATIONS

« 146-, 73- and 36-Gbyte capacities

« 3.3-msac average read and 3.6-msec average write seek tmes
« Untad 2 o rate

* 14

MTBE)
RE520 SCSI and 2 Ghits/sec Fibre Channel interiaces

For rare infarmation an why 15K is the industry’s best price/perfarmance disc drive for
wse in mainstream stovane aooficabons. wsit hito://soecials seacate.com/15k

10

Modern SSD 1.5M MTBF === 170 years

720hrs/month === 2 month = 1.5 k hrs === 2000 months = 1.5m hrs = 2000/12 ==
170yrs

170 years....??!

Real Devices — the small print “.

« The Cheetah 15K.4 price-per-performancs value united with the breakthrough bensdits

delvering maximum I0PS with fzwer drives 1o yield lower TCO.

S1 {SAS) make # the optimal 3.5-inch drive for rock solid

Modern SSD 1.5M MTBF === 170 years

720hrs/month === 2 month = 1.5 k hrs === 2000 months = 1.5m hrs = 2000/12 ==

170yrs

11

Disk failure conditional probability
distribution - Bathtub curve i‘-

Infant Burn
4 mortality out
‘\ — Stable failure period
)
E;
=
s
& 1/ (reported MTTF)
e e
Expected opeﬁ'ating lifetime
0 »

Time
12

" Other (more morbid) “

Bathtub Curves

ol -

0.00I

Death rate, log scale

0.0001 -

0.01

Human
Mortality
Infant Rates
mortality (US, 1 999)
Aging
Normal working
20 60 100
Age, years

From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart, " IEEE Spectrum, Sep. 2004.
Data from http://www.mortality.org 13

13

Other Bathtub Curves

N

Figure 2. Age-specific death rates: United States, preliminary 2007

14,000 -
700,
oo |E%
& s
< € w0
S 10,000 b 8
s T 300
32 3
3 g
§8.000- 2 0
g <1 1-4 59 10-14 1519 20-24 25-290 30-4 B9
g So0f Age tyears)
by 4
o /
& 4,000 F /
2,000
Vi
B .
T 39 T2 323 8 0325"’:2 &
1333832333313 3333383¢8
- - o~ o~ «” - - o ©o © ~ ~
Age (years)

SOURCE: Natonal Vital Statistics System, Mortalty.
From: L. Gavrilov & N. Gavrilova, “Why We Fall Apart, " IEEE Spectrum, Sep.
Data from http://www.mortality.org

2004.

14

So, back to disks... “

* How can disks fail?

* Whole disk failure (power supply, electronics, motor,
etc.)

» Sector errors - soft or hard

* Read or write to the wrong place (e.g., disk is
bumped during operation)

+ Can fail to read or write if head is too high, coating on
disk bad, etc.

* Disk head can hit the disk and scratch it.

15

15

Coping with failures... “

* A failure
+ Let’ s say one bit in your DRAM fails.
* Propagates

* Assume it flips a bit in a memory address the kernel is
writing to. That causes a big memory error elsewhere,
or a kernel panic.

» This program is running one of a dozen storage servers
for your distributed filesystem.

» Aclient can’t read from the DFS, so it hangs.

» A professor can’t check out a copy of your 15-440
assignment, so he gives you an F.

16

16

Recovery Techniques “

+ We've already seen some: e.g., retransmissions in
TCP and in your RPC system

« Modularity can help in failure isolation: preventing an
error in one component from spreading.
» Analogy: The firewall in your car keeps an engine fire from
affecting passengers
« Today: Redundancy and Retries
» Next lecture: Specific techniques used in file systems, disks
+ This time: Understand how to quantify reliability
» Understand basic techniques of replication and fault masking

17

17

What are our options?

"«

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

18

18

Parity Checking

"«

Single Bit Parity:

Detect single bit errors

«— d data bits —ALo

| 0111000110101011] ol

19

19

Block Error Detection

"«

+ EDC-= Error Detection and Correction bits (redundancy)

« D = Data protected by error checking, may include header fields

+ Error detection not 100% reliable!
+ Protocol may miss some errors, but rarely

« Larger EDC field yields better detection and correction

| datagram I

error

4
| D Tenc | | D |eoc]

-~ () bit-error prone link)

e
detected

20

20

Error Detection - Checksum

"«

Used by TCP, UDP, IP, etc..

Ones complement sum of all words/shorts/bytes
in packet

Simple to implement

Relatively weak detection
+ Easily tricked by typical error patterns — e.g. bit flips

21

21

Example: Internet Checksum “

« Goal: detect “errors” (e.g., flipped bits) in transmitted

segment
Sender Receiver

* Treat segment contents * Compute checksum of
as sequence of 16-bit received segment
integers + Check if computed

+ Checksum: addition (1’ s checksum equals
complement sum) of checksum field value:
segment contents + NO - error detected

» Sender puts checksum « YES - no error
value into checksum field detected. But maybe
in header errors nonethless?

22

16 bit checksum = 2*16 values
This means that 1 out 2*16 packets have the same checksum

22

Error Detection — Cyclic “

Redundancy Check (CRC)

* Polynomial code
» Treat packet bits a coefficients of n-bit polynomial

* Choose r+1 bit generator polynomial (well known —
chosen in advance)

« Add r bits to packet such that message is divisible by
generator polynomial
» Better loss detection properties than checksums

* Cyclic codes have favorable properties in that they are
well suited for detecting burst errors

» Therefore, used on networks/hard drives

23

23

Error Detection — CRC

"«

View data bits, D, as a binary number
Choose r+1 bit pattern (generator), G

* Goal: choose r CRC bits, R, such that
+ <D,R> exactly divisible by G (modulo 2)

* Receiver knows G, divides <D,R> by G. If non-zero remainder:

error detected!
« Can detect all burst errors less than r+1 bits

Widely used in practice

< d bits > +— 1 bits —
bit
| D: data bits to be sentl R:CRC bitsl pattern
D*2" XOR R mathematical
formula

24

24

"«

CRC Example
Want:
D2 XOR R =nG
equivalently:
D2'=nG XORR
equivalently:
if we divide D-2" by G,

want reminder R

D-2r
G

R = remainder[

]

1001101110000

101011

G «—

1001 "D
101
000

=

6]
0

HrRlor o
or'=o
oo

O
QO
=Oo

e
o))
or
o)

o
}_l
’_\

25

25

Break... and valuable feedback “

10.

You can't cheat on this exam because no one knows the answers.
This class was like milk, it was good for 2 weeks.

| would have been better off using the tuition money to heat my
apartment last winter.

Emotional scarring may fade away, but this big fat F on my
transcript won't.

Profs are evil computer science teaching robots who crush
students for pleasure.

| learned there are 137 tiles on the ceiling.

Not only is the book a better teacher, it also has a better
personality.

Teaches well, invites questions - then tells bad jokes for 20
minutes.

Bring a pillow.

. . . really from RateMyProfessor.com
Your pillow will need a pillow. (ealy z)

26

26

Real Feedback

* Lecture

» Speed, breaks, more
examples

» Slides

* More/Less detalil,
before class, with
answers

* Links between
projects/HW/lecture

* E.g., DFS or mutual
exclusion

* Too much networking

"«

Projects are hard but
rewarding

Love Go
More recent systems

More recitations/office
hours

27

27

What are our options?

"«

1. Silently return the wrong answer.

2. Detect failure.

3. Correct / mask the failure

28

28

Error Recovery “

« Two forms of error recovery
* Redundancy
* Error Correcting Codes (ECC)
* Replication/Voting
* Retry

- ECC
* Keep encoded redundant data to help repair losses
» Forward Error Correction (FEC) — send bits in advance
» Reduces latency of recovery at the cost of bandwidth

29

29

Error Recovery — Error
Correcting Codes (ECC)

"«

Two Dimensional Bit Parity:
Detect and correct single bit errors

no errors parity
error

row
party
di,1 cee dqy di e
doq1 crc daj|dojug
column di1 o di-j d'.J+1
parity disq,1

dis1] dis jur

, parity
error

correctable
single bit error

30

30

Replication/Voting

"«

 If you take this to the extreme
[r1] [r2] [r3]

modular redundancy
*Compare the answers, take the majority
*Assumes no error detection

Send requests to all three versions of the software: Triple

In practice - used mostly in space applications; some

extreme high availability apps (stocks & banking? maybe.
But usually there are cheaper alternatives if you don’t

need real-time)

-Stuff we cover later: surviving malicious failures through voting

(byzantine fault tolerance)

K}l
31

31

Retry — Network Example

"«

« Sometimes errors

are transient

* Need to have error
detection
mechanism Time

* E.g., timeout,
parity, chksum

* No need for

Sender Receiver

Rk —

_Timeout

majority vote

32

32

One key question “

* How correlated are failures?

« Can you assume independence?
« If the failure probability of a computer in a rack is p,
* What is p(computer 2 failing) | computer 1 failed?

« Maybe it’ s p... or maybe they’ re both plugged into
the same UPS...

* Why is this important?
+ Correlation reduces value of redundancy

33

33

Fault Tolerant Design

"«

« Quantify probability of failure of each component

* Quantify the costs of the failure

« Quantify the costs of implementing fault tolerance

» This is all probabilities...

34

Summary “

* Definition of MTTF/MTBF/MTTR: Understanding
availability in systems.

 Failure detection and fault masking techniques

* Engineering tradeoff: Cost of failures vs. cost of
failure masking.
* At what level of system to mask failures?

+ Leading into replication as a general strategy for fault
tolerance

* Thought to leave you with:

* What if you have to survive the failure of entire
computers? Of arack? Of a datacenter?

35
35

35

Replacement Rates

"«

HPC1 cOoM1 CcCOoM2

Component Component Component %

Hard drive 30.6 Power supply 34.8 Hard drive 491
Memory 28.5 Memory 201 Motherboard 234
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 1.4 RAID card 41

motherboard 4.9 Fan 8 Memory 34

Controller 29 CPU 2 SCSI cable 2.2

QsSwW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

36

36

" Back to Disks. ..
What are our options?

"«

1. Silently return the wrong answer.
2. Detect failure.

» Every sector has a header with a checksum. Every read
fetches both, computes the checksum on the data, and
compares it to the version in the header. Returns error if

mismatch.
3. Correct / mask the failure

* Re-read if the firmware signals error (may help if transient

error, may not)

» Use an error correcting code (what kinds of errors do they

help?)
* Bitflips? Yes. Block damaged? No
* Have the data stored in multiple places (RAID)

37

37

Fail-fast disk

failfast_get (data, sn) {
get (s, sn);
if (checksum(s.data) = s.cksum) {
data < s.data;
return OK;
} else {
return BAD;

"«

38

38

Careful disk

careful_get (data, sn) {
r — 0O;
while (r < 10) {
r « failfast_get (data, sn);
if (r = OK) return OK;
r++:

}
return BAD;

"N

39

39

Use multiple disks?

Capacity

+ More disks allows us to store more data
Performance

» Access multiple disks in parallel

« Each disk can be working on independent read or write

« Overlap seek and rotational positioning time for all
Reliability

+ Recover from disk (or single sector) failures

« Will need to store multiple copies of data to recover

So, what is the simplest arrangement?

"«

40

40

Just a bunch of disks (JBOD)

N
N

A0

N

Al

N———"

A2

Ne—

A3
N1

<
MNe—]

B0
N1

B1
N1

B2

Ne—

B3
N

* Yes, it's a goofy name

* industry really does sell “JBOD enclosures”

N
N]

Co

N—

Cl

N—

C2

Ne—

C3
N1

-

DO
N1

D1
N

D2
N1

D3
N1

"«

41

41

Disk Subsystem Load Balancing “.

* 1/O requests are almost never evenly distributed

+ Some data is requested more than other data
+ Depends on the apps, usage, time, ...

+ What is the right data-to-disk assignment policy?
+ Common approach: Fixed data placement
* Your data is on disk X, period!
» For good reasons too: you bought it or you're paying more...
+ Fancy: Dynamic data placement

« If some of your files are accessed a lot, the admin(or even
system) may separate the “hot” files across multiple disks

+ In this scenario, entire files systems (or even files) are manually moved
by the system admin to specific disks

+ Alternative: Disk striping
« Stripe all of the data across all of the disks

42

42

Disk Striping “

* Interleave data across multiple disks
+ Large file streaming can enjoy parallel transfers

* High throughput requests can enjoy thorough load
balancing

« If blocks of hot files equally likely on all disks (really?)

| | | | | | |

File Foo: | I I | I I |

stripe unit
or block

J

43

Stripe |

43

Disk striping details “

* How disk striping works
* Break up total space into fixed-size stripe units
+ Distribute the stripe units among disks in round-robin
+ Compute location of block #B as follows
* disk# = B%N (%=modulo,N = #ofdisks)
* LBN# = B / N (computes the LBN on given disk)

44

44

Now, What If A Disk Fails? “

* In a JBOD (independent disk) system
» one or more file systems lost

* In a striped system
+ a part of each file system lost

« Backups can help, but
* backing up takes time and effort
* backup doesn’t help recover data lost during that day

* Any data loss is a big deal to a bank or stock
exchange

45

45

_Tolerating and masking disk “

failures

« If a disk fails, it's data is gone

* may be recoverable, but may not be
* To keep operating in face of failure

* must have some kind of data redundancy
« Common forms of data redundancy

* replication

+ erasure-correcting codes

* error-correcting codes

46

46

