N

15-440 Distributed Systems

Lecture 19 — Naming and Hashing

Names

L\

* Names are associated with objects
» Enables passing of references to objects
* Indirection
» Deferring decision on meaning/binding

« Examples
» Registers > R5
* Memory > Oxdeadbeef
» Host names = srini.com
» User names - sseshan
» Email - srini@cmu.edu
» File name - /ust/srini/foo.txt
* URLs = http://www.srini.com/index.html
« Ethernet > f8:e4:fb:bf:3d:a6

Name Lookup Styles “

* Table lookup
« Simple, table per context

* Recursive
* Names consist of context + name
» E.g. path + filename, hostname + domain name

» Context name must also be resolved
» Need special context such as “root” built into resolver

* Multiple lookup
» Try multiple contexts to resolve name - search paths

3

Name Discovery

L\

* Well-known name
* www.google.com, port 80...
» Broadcast
+ Advertise name - e.g. 802.11 Beacons
* Query
+ Use google
» Broadcast query
» Ethernet ARP
« Use another naming system
+ DNS returns IP addresses
* Introductions
» Web page hyperlinks
» Physical rendezvous
» Exchange info in the real world

Naming Model “

—

N

3 key elements

Name space

» Alphabet of symbols + syntax that specify names
Name-mapping

» Associates each name to some value in...
Universe of values

» Typically an object or another name from original name
space (or another name space)

Name-to-value mapping is called a “binding” i.e. name
is bound to value

Names “

* Uniqueness
» One-to-one mapping
* One-to-many or many-to-one (name-to-value)
mappings
» Context sensitive resolution
+ Stable binding
» Names that are never reused
» Values that can only have one name
» E.g. using MD5 of file contents, bank account numbers

* Reverse lookup support

Name Mapping “

* Names are mapped to values within some context

« E.g., different lookup tables for names in different
settings

* Two sources for context
» Resolver can supply default context

» Name can specify an explicit context to use - qualified
name

+ “cd /users/srini/440/midterm” vs
“cd 440/midterm”

Context “

« Common problem - what context to use for
names without context

+ Consider email from CMU
+ To: srini, yuvraj@gmail.com
* What happens when yuvraj replies to all?
» What context will he email srini
+ Solutions:
+ Sendmail converts all address to qualified names
» Not in body of message
+ Provide context information in email header
« E.g. like base element in HTML

Overview

* DNS Review

* DNS Details

* Hashing Tricks

L\

DNS Records “

RR format: (class, name, value, type, ttl)

+ DB contains tuples called resource records (RRs)
+ Classes = Internet (IN), Chaosnet (CH), etc.
« Each class defines value associated with type

FOR IN class:
+ Type=A + Type=CNAME
+ name is hostname * name is an alias name for some
« value is IP address “canonical” (the real) name
+ Type=NS + value is canonical name
+ name is domain (e.g. foo.com) + Type=MX
« value is name of authoritative name + value is hostname of mailserver
server for this domain associated with name

10

DNS Design: Zone Definitions “

» Zone = contiguous section
of name space
« E.g., Complete tree, single
root 9 P g

de or subtree
/ \\\ no
org ca\ . .
n et/ed(com Uk A zone has an associated
set of name servers

» Must store list of names and
tree links

Subtree
Single node

Complete
Tree

11

Workload and Caching

L\

+ Are all servers/names likely to be equally popular?
+ Why might this be a problem? How can we solve this problem?

» DNS responses are cached
+ Quick response for repeated translations
+ Other queries may reuse some parts of lookup
* NS records for domains
» DNS negative queries are cached
+ Don't have to repeat past mistakes
+ E.g. misspellings, search strings in resolv.conf
Cached data periodically times out
« Lifetime (TTL) of data controlled by owner of data
« TTL passed with every record

12

L\

Typical Resolution

root & edu
\\}
www.cs.cmu.edu osﬁ“‘“‘ed DNS server
o . w o edu
4 o
<) — WS ®
N ns1.cmu.edu
DNS server

Local

Client DNS server
ns1.cs.cmu.edu

DNS
server

Subsequent Lookup Example

L\

ftp.cs.cmu.edu

Q_

Client Local

DNS server

root & edu
DNS server

cmu.edu
DNS server

cs.cmu.edu
DNS
server

14

Overview

* DNS Review

* DNS Details

* Hashing Tricks

L\

15

Reverse DNS

L\

unnamed root

/]

in-addr cmu
128 cs
2 \
| cmcl
194 ‘
| kittyhawk
242 128.2.194.242

* Task

« Given IP address, find its name

* Method

+ Maintain separate hierarchy based
on IP names

+ Write 128.2.194.242 as
242.194.2.128.in-addr.arpa

+ Why is the address reversed?
+ Managing

» Authority manages IP addresses

assigned to it

+ E.g., CMU manages name space
128.2.in-addr.arpa

16

.arpa Name Server Hierarchy “

in-addr.arpa a.root-servers.net - - - m.root-servers.net
chia.arin.net

128 (dill, henna, indigo, epazote, figwort, ginseng)
A\ cucumber.srv.cs.cmu.edu,

2 t-ns1.net.cmu.edu

/ t-ns2.net.cmu.edu

19 mango.srv.cs.cmu.edu
(peach, banana, blueberry)

/\ « At each level of hierarchy, have group

kittyhawk .
1282 194 242 of servers that are authorized to

handle that region of hierarchy

-

17

Tracing Hierarchy (1) “

* Dig Program
» Use flags to find name server (NS)

» Disable recursion so that operates one step at a time

unix>
great

lig +norecurse @a.root-servers.net N
8. 1C

5]

.Cs.cmu.edu

;7 ADDITIONAL SECTION:

a.edu-servers.net 172800 1IN A 192.5.6.30
c.edu-servers.net. 172800 1IN A 192.26.92.30
d.edu-servers.net. 172800 1IN A 192.31.80.30
f.edu-servers.net. 172800 1IN A 1EP 55 Bl e S0
g.edu-servers.net. 172800 1IN A 192.42.93.30
g.edu-servers.net. 172800 1IN ARRA 2SS SEICC2CHEEPER 6
1.edu-servers.net. 172800 1IN A 192.41.162.30

IP v6 address
+ All .edu names handled by set of servers

18

Prefetching “

* Name servers can add additional data to
response

» Typically used for prefetching
* CNAME/MX/NS typically point to another host name

* Responses include address of host referred to in
“additional section”

19

Tracing Hierarchy (2)

L\

» 3 servers handle CMU names

;7 AUTHORITY SECTION:

cmu.edu. 172800 1IN NS
cmu.edu. 172800 1IN NS
cmu.edu. 172800 1IN NS

@g.edu-servers.net

NS

ny-server-03.net.cmu.edu.
nsauthl.net.cmu.edu.
nsauth2.net.cmu.edu.

20

20

Tracing Hierarchy (3 & 4)

L\

- 3 servers handle CMU CS names

N @Ansanutrhi Fapp— 411 NS
se (@nsauthl.net.cmu.edu NS

greac 1. eau

;7 AUTHORITY SECTION:

cs.cmu.edu. 600 IN NS AC-DDNS-2.NET.
cs.cmu.edu. 600 IN NS AC-DDNS-1.NET.
cs.cmu.edu. 600 IN NS AC-DDNS-3.NET.

cs.cmu.edu.
cs.cmu.edu.
cs.cmu.edu.

unix>dig +norec cmu.edu NS

greatwnite.

;7 AUTHORITY SECTION:
cs.cmu.edu. 300 IN SOA PLANISPHERE.FAC.

cs.cmu.edu.

21

21

DNS Hack #1

L\

» Can return multiple A records - what does this

mean?

+ Load Balance
» Server sends out multiple A records
» Order of these records changes per-client

22

22

Server Balancing Example

L\

« DNS Tricks

w.google.com

unixl> dig w

;; ANSWER SECTION:

WWw.google.com. 87775 IN CNAME www.l.google.com.
www.l.google.com. 81 IN A 72.14.204.104
www.l.google.com. 81 IN A 72.14.204.105
www.l.google.com. 81 IN A 72.14.204.147
www.l.google.com. 81 IN A 72.14.204.99
www.l.google.com. 81 IN A 72.14.204.103
unix2> dig www.google.com
;7 ANSWER SECTION:
www.google.com. 603997 1IN CNAME www.l.google.com.
www.l.google.com. 145 IN A 72.14.204.99
www.l.google.com. 145 IN A 72.14.204.103
www.l.google.com. 145 IN A 72.14.204.104
www.l.google.com. 145 IN A 72.14.204.105
www.l.google.com. 145 IN A 72.14.204.147

23

23

Root Zone

L\

» Generic Top Level Domains (gTLD) = .com, .net,

.org, etc...

* Country Code Top Level Domain (ccTLD) = .us,

.ca, .fi, .uk, etc...

* Root server ({a-m}.root-servers.net) also used to

cover gTLD domains
» Load on root servers was growing quickly!

* Moving .com, .net, .org off root servers was clearly

necessary to reduce load > done Aug 2000

24

24

gTLDs “

Unsponsored
+ .com, .edu, .gov, .mil, .net, .org
+ .biz - businesses
+ .info - general info
+ .name -> individuals
Sponsored (controlled by a particular association)
+ .aero -> air-transport industry
+ .cat - catalan related
+ .coop - business cooperatives
+ .jobs = job announcements
* .museum - museums
+ .pro = accountants, lawyers, and physicians
+ .travel > travel industry
Starting up
+ .mobi = mobile phone targeted domains
« .post = postal
« .tel > telephone related
Proposed
+ .asia, .cym, .geo, .kid, .mail, .sco, .web, .xxx

25

25

New Registrars

L\

* Network Solutions (NSI) used to handle all
registrations, root servers, etc...
» Clearly not the democratic (Internet) way
» Large number of registrars that can create new

domains = However NSI still handles A root server

26

26

Do you trust the TLD operators? “

» Wildcard DNS record for all .com and .net domain
names not yet registered by others
» September 15 — October 4, 2003
» February 2004: Verisign sues ICANN
* Redirection for these domain names to Verisign
web portal (SiteFinder)

27

27

Overview

* DNS Refresh

* DNS Details

* Hashing Tricks

L\

28

28

DNS (Summary)

L\

* Motivations - large distributed database
» Scalability
» Independent update
* Robustness
» Hierarchical database structure
« Zones
* How is a lookup done

» Caching/prefetching and TTLs
* Reverse name lookup

What are the steps to creating your own domain?

29

29

Hashing “

Two uses of hashing that are becoming wildly
popular in distributed systems:

+ Content-based naming

» Consistent Hashing of various forms

30

Example systems that use them “

 BitTorrent & many other modern p2p systems use
content-based naming

+ Content distribution networks such as Akamai use
consistent hashing to place content on servers

« Amazon, Linkedin, etc., all have built very large-
scale key-value storage systems (databases--)
using consistent hashing

31

Dividing items onto storage servers “

» Option 1: Static partition (items a-c go there, d-f
go there, ...)

« If you used the server name, what if “cowpatties.com”
had 1000000 pages, but “zebras.com” had only 10? >
Load imbalance

» Could fill up the bins as they arrive > Requires tracking
the location of every object at the front-end.

32

Hashing 1

L\

* Let nodes be numbered 1..m

+ Client uses a good hash function to map a URL to

1..m

» Say hash (url) = x, so, client fetches content from

node x
» No duplication — not being fault tolerant.
* Any other problems?

+ What happens if a node goes down?

» What happens if a node comes back up?
+ What if different nodes have different views?

33

Option 2: Conventional Hashing “

* bucket = hash(item) % num_buckets

+ Sweet! Now the server we use is a deterministic
function of the item, e.g., sha1(URL) = 160 bit ID
% 20 - a server ID

+ But what happens if we want to add or remove a
server?

34

Option 2: Conventional Hashing

L\

* Let 90 documents, node 1..9, node 10 which was

dead is alive again

* % of documents in the wrong node?

+ 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,

82-90
« Disruption coefficient= %> ®

35

Consistent Hash “

« “view” = subset of all hash buckets that are
visible
* Desired features

» Balanced — in any one view, load is equal across
buckets

+ Smoothness — little impact on hash bucket contents
when buckets are added/removed

« Spread — small set of hash buckets that may hold an
object regardless of views

» Load — across all views # of objects assigned to hash
bucket is small

36

Consistent Hash — Example

L\

+ Construction

+ Assign each of C hash buckets to
random points on mod 2" circle,
where, hash key size = n.

* Map object to random position on
circle

* Hash of object = closest
clockwise bucket

12

8

* Smoothness = addition of bucket does not cause much

movement between existing buckets

» Spread & Load > small set of buckets that lie near object
« Balance - no bucket is responsible for large number of

objects

37

Detail - “virtual” nodes “

* The way we outlined it results in moderate load
imbalance between buckets (remember balls and
bins analysis of hashing?)

* To reduce imbalance, systems often represent
each physical node as k different buckets,
sometimes called “virtual nodes” (but really, it’s
just multiple buckets).

* log n buckets gets you a very pleasing load
balance - O(#items/n) with high probability, if
#items large and uniformly distributed

38

Hashing 2: For naming “

* Many file systems split files into blocks and store
each block on a disk.

+ Several levels of naming:
« Pathname to list of blocks

» Block #s are addresses where you can find the data
stored therein. (But in practice, they're logical block #s
— the disk can change the location at which it stores a
particular block... so they’re actually more like names
and need a lookup to location :)

39

A problem to solve... “

Imagine you’ re creating a backup server

It stores the full data for 1000 CMU users’ laptops
Each user has a 100GB disk.

That’s 100TB and lots of $$$

How can we reduce the storage requirements?

40

“Deduplication” “

* A common goal in big archival storage systems.
Those 1000 users probably have a lot of data in
common -- the OS, copies of binaries, maybe even
the same music or movies

« How can we detect those duplicates and coalesce
them?

* One way: Content-based naming, also called
con;ent-addressable foo (storage, memory, networks,
etc.

» A fancy name for...

41

Name items by their hash “

+ Imagine that your filesystem had a layer of indirection:

» pathname - hash(data)
» hash(data) > list of blocks

* For example:
« /src/foo.c -> 0xfff32f2fa11d00f0
» Oxfff32f2fa11d00f0 -> [5623, 5624, 5625, 8993]

« If there were two identical copies of foo.c on disk ...
We’'d only have to store it once!
» Name of second copy can be different

42

Name boundaries by their hash:

Rabin Fingerprinting

L\

| File Data

|
@
|

Rabin Fingerprints

Natural Boundary

Given Value @

Natural Boundary

43

43

Self-Certifying Names “

» Several p2p systems operate something like:

« Search for “national anthem”, find a particular file
name (starspangled.mp3).

+ |dentify the files by the hash of their content
(0x2fab4f001...)

* Request to download a file whose hash matches
the one you want

+ Advantage? You can verify what you got, even if
you got it from an untrusted source (like some
dude on a p2p network)

44

Self-certifying Names

L\

* Use a name that helps validate the data
associated with the name
» Seems like a circular argument but...

» Traditional name - Declaration of Independence

« Self-certifying name >

SHA1(Declaration of Independence contents)

+ SHA1 - cryptographic hash

45

45

Self-Certifying Names “

» Can also create names using public key crypto
» Name = Hash(pubkey, salt)
» Value = <pubkey, salt, data, signature>
» Signature == [cryptohash(data)] encrypt with prvkey
» Can verify name related to pubkey and pubkey signed data

* Benefits

» Can verify contents after receiving file

+ Can fetch file from untrustworthy sources
+ Weaknesses

» No longer human readible

46

46

Hash functions “

» Given a universe of possible objects U,
map N objects from U to an M-bit hash.
« Typically, |U| >>> 2M,
» This means that there can be collisions: Multiple
objects map to the same M-bit representation.

+ Likelihood of collision depends on hash function,
M, and N.

« Birthday paradox - roughly 50% collision with 2M/2
objects for a well designed hash function

47

Desirable Properties “

(Cryptographic Hashes)

Compression: Maps a variable-length input to a fixed-
length output
Ease of computation: A relative metric...

Pre-image resistance:

» Given a hash value h it should be difficult to find any
message m such that h = hash(m)

2nd pre-image resistance:

» Given an input m, it should be difficult to find different input
m, such that hash(m,) = hash(m,)

collision resistance:

« difficult to find two different messages m; and m, such that
hash(m,) = hash(m,)

48

Longevity “

+ “Computationally infeasible” means different
things in 1970 and 2012.
» Moore’s law
+ Some day, maybe, perhaps, sorta, kinda: Quantum
computing.
» Hash functions are not an exact science yet.
* They get broken by advances in crypto.

49

Real hash functions

N,

Name Introduced Weakened Broken Replacement
MD4 1990 1991 1995 1-5y MD5
MD5 1992 1994 2004 8-10y SHA-I
MD2 1992 1995 abandoned 3y SHA-I
RIPEMD 1992 1997 2004 5-12y RIPEMD-160
HAVAL-128 1992 - 2004 12y SHA-I
SHA-0 1993 1998 2004 S-1ly SHA-I
SHA-I 1995 2004 not quite yet 9+ SHA-2 &3
SHA'25(|22§6’ 4, 2001 still good
SHA-3 2012 brand new

50

Using them “

* How long does the hash need to have the desired
properties (preimage resistance, etc)?
» rsync: For the duration of the sync;
» dedup: Until a (probably major) software update;
 store-by-hash: Until you replace the storage system

* What is the adversarial model?

» Protecting against bit flips vs. an adversary who can try
1B hashes/second?

51

Final pointer “

» Hashing forms the basis for MACs - message
authentication codes
» Basically, a hash function with a secret key.
» H(key, data) - can only create or verify the hash given
the key.
» Very, very useful building block

52

Summary “

* Hashes used for:
» Splitting up work/storage in a distributed fashion
» Naming objects with self-certifying properties
« Key applications
» Key-value storage
» P2P content lookup
» Deduplication
+ MAC
* Many types of naming

+ DNS names, IP addresses, Ethernet addresses, content-
based addresses

» Make sure you understand differences

53

53

Overview

L\

» BigTable

* Spanner

* Naming Overview

» Hashing Tricks

54

