15-440 Distributed Systems

Lecture 20 — Hashing and CDNs

Names

« Names are associated with objects
+ Enables passing of references to objects
* Indirection
» Deferring decision on meaning/binding

« Examples
* Registers > R5
* Memory - Oxdeadbeef
* Host names - srini.com
« User names - sseshan
+ Email = srini@cmu.edu
» File name - /usr/srini/foo.txt
* URLs = http://www.srini.com/index.html
» Ethernet - f8:e4:fb:bf:3d:a6

"«

Dividing items onto storage servers “

« Option 1: Static partition (items a-c go there, d-f
go there, ...)

« If you used the server name, what if “cowpatties.com”
had 1000000 pages, but “zebras.com” had only 10? -
Load imbalance

+ Could fill up the bins as they arrive - Requires tracking
the location of every object at the front-end.

Hashing 1 “

* Let nodes be numbered 1..m

» Client uses a good hash function to map a URL to
1..m

« Say hash (url) = x, so, client fetches content from
node x

* No duplication — not being fault tolerant.

* Any other problems?
+ What happens if a node goes down?
+ What happens if a node comes back up?
« What if different nodes have different views?

Option 2: Conventional Hashing k‘.

» bucket = hash(item) DIV num_buckets

+ Sweet! Now the server we use is a deterministic
function of the item, e.g., sha1(URL) = 160 bit ID
DIV 20 - a server ID

« But what happens if we want to add or remove a
server?

Option 2: Conventional Hashing “

* Let 90 documents, node 1..9, node 10 which was
dead is alive again

* % of documents in the wrong node?

* 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90

* Disruption coefficient =", ®

Consistent Hash

"«

« “view” = subset of all hash buckets that are
visible

* Desired features

Balanced — in any one view, load is equal across

buckets

Smoothness — little impact on hash bucket contents

when buckets are added/removed

Spread — small set of hash buckets that may hold an

object regardless of views

Load — across all views # of objects assigned to hash

bucket is small

Consistent Hash — Example “

« Construction

+ Assign each of C hash buckets to
random points on mod 2" circle,
where, hash key size = n.

* Map object to random position on
circle

* Hash of object = closest
clockwise bucket
* Smoothness - addition of bucket does not cause much
movement between existing buckets
+ Spread & Load - small set of buckets that lie near object

+ Balance - no bucket is responsible for large number of
objects

12 4

8

Detail - “virtual” nodes “

« The way we outlined it results in moderate load
imbalance between buckets (remember balls and
bins analysis of hashing?)

» To reduce imbalance, systems often represent
each physical node as k different buckets,
sometimes called “virtual nodes” (but really, it's
just multiple buckets).

* log n buckets gets you a very pleasing load
balance - O(#items/n) with high probability, if
#items large and uniformly distributed

Hashing 2: For naming “

* Many file systems split files into blocks and store
each block on a disk.

+ Several levels of naming:
+ Pathname to list of blocks
* Block #s are addresses where you can find the data
stored therein. (But in practice, they're logical block #s
— the disk can change the location at which it stores a
particular block... so they’re actually more like names
and need a lookup to location :)

10

A problem to solve...

+ Imagine you’ re creating a backup server

Each user has a 100GB disk.
That’ s 100TB and lots of $$$

"«

It stores the full data for 1000 CMU users’ laptops

How can we reduce the storage requirements?

11

“Deduplication” “

« A common goal in big archival storage systems.

Those 1000 users probably have a lot of data in
common -- the OS, copies of binaries, maybe even
the same music or movies

* How can we detect those duplicates and coalesce

them?

+ One way: Content-based naming, also called

content-addressable foo (storage, memory, networks,
etc.)

« A fancy name for...

12

Name items by their hash “

+ Imagine that your filesystem had a layer of indirection:
» pathname - hash(data)
» hash(data) - list of blocks

« For example:
+ /src/foo.c -> 0xfff32f2fa11d00f0
« Oxfff32f2fa11d00f0 -> [5623, 5624, 5625, 8993]

+ |If there were two identical copies of foo.c on disk ...
We'd only have to store it once!
« Name of second copy can be different

13

Rabin Fingerprints

Name boundaries by their hash:
Rabin Fingerprinting “
Hash 1 Hash 2
A . A .
4 Y
File Data
L1 1 1 | | |
N
@aede e o
I B
4 7 E 2 i

Given Value -@

Natural Boundary

Natural Boundary

14

Self-Certifying Names “

« Several p2p systems operate something like:

« Search for “national anthem”, find a particular file
name (starspangled.mp3).

+ |dentify the files by the hash of their content
(Ox2fab4f001...)

* Request to download a file whose hash matches
the one you want

« Advantage? You can verify what you got, even if
you got it from an untrusted source (like some
dude on a p2p network)

15

Self-certifying Names

+ Use a name that helps validate the data
associated with the name
+ Seems like a circular argument but...

"«

+ Traditional name - Declaration of Independence

+ Self-certifying name ->

SHA1(Declaration of Independence contents)

+ SHA1 - cryptographic hash

16

16

Self-Certifying Names “

« Can also create names using public key crypto
* Name = Hash(pubkey, salt)
» Value = <pubkey, salt, data, signature>
« Signature == [cryptohash(data)] encrypt with prvkey
» Can verify name related to pubkey and pubkey signed data

+ Benefits
+ Can verify contents after receiving file
+ Can fetch file from untrustworthy sources

+ Weaknesses
» No longer human readible

17

17

Hash functions “

+ Given a universe of possible objects U,
map N objects from U to an M-bit hash.
* Typically, |U| >>> 2M,
* This means that there can be collisions: Multiple
objects map to the same M-bit representation.
+ Likelihood of collision depends on hash function,
M, and N.

« Birthday paradox = roughly 50% collision with 2M/2
objects for a well designed hash function

18

Desirable Properties “

(Cryptographic Hashes)

Compression: Maps a variable-length input to a fixed-
length output

Ease of computation: A relative metric...

Pre-image resistance:

» Given a hash value h it should be difficult to find any
message m such that h = hash(m)

2nd pre-image resistance:

+ Given an input my it should be difficult to find different input
m, such that hash(m,) = hash(m,)

collision resistance:

« difficult to find two different messages m, and m, such that
hash(m,) = hash(m,)

19

Longevity “

« “Computationally infeasible” means different
things in 1970 and 2012.

« Moore’s law
+ Some day, maybe, perhaps, sorta, kinda: Quantum
computing.
« Hash functions are not an exact science yet.
* They get broken by advances in crypto.

20

Real hash functions

N

Name Introduced Weakened Broken Lifetime Replacement
MD4 1990 1991 1995 1-5y MD5
MD5 1992 1994 2004 8-10y SHA-1
MD2 1992 1995 abandoned 3y SHA-1

RIPEMD 1992 1997 2004 5-12y RIPEMD-160

HAVAL-128 1992 - 2004 12y SHA-1
SHA-0 1993 1998 2004 S5-1ly SHA-1
SHA-1 1995 2004 not quite yet 9+ SHA-2 &3
SHA‘25(|225)6' 384, 2001 still good
SHA-3 2012 brand new

21

Using them “

* How long does the hash need to have the desired
properties (preimage resistance, etc)?
» rsync: For the duration of the sync;
+ dedup: Until a (probably major) software update;
« store-by-hash: Until you replace the storage system

* What is the adversarial model?

* Protecting against bit flips vs. an adversary who can try
1B hashes/second?

22

Final pointer “

+ Hashing forms the basis for MACs - message
authentication codes
+ Basically, a hash function with a secret key.
* H(key, data) - can only create or verify the hash given
the key.
* Very, very useful building block

23

Summary “

» Hashes used for:
« Splitting up work/storage in a distributed fashion
» Naming objects with self-certifying properties
« Key applications
+ Key-value storage
» P2P content lookup
» Deduplication
+ MAC

« Many types of naming

« DNS names, IP addresses, Ethernet addresses, content-
based addresses

» Make sure you understand differences

24

24

Outline

* Hashing

"«

* Content Distribution Networks

25

25

Solutions?

Typical Workload (Web Pages) “

Multiple (typically small) objects per page
File sizes are heavy-tailed

Embedded references

This plays havoc with performance. Why?

*Lots of small objects & TCP
*3-way handshake
*Lots of slow starts
*Extra connection state

26

3 way handshake, multiple slow starts

26

Content Distribution Networks (CDNs) “.

« The content providers are the
CDN customers.

« Content replication

+ CDN company installs hundreds
of CDN servers throughout
Internet

» Close to users
+ CDN replicates its customers’
content in CDN servers. When

provider updates content, CDN
updates servers

origin server
in North America

CDN distribution node
CDN server

) i CDN server
in S. America CDN server
in Europe

in Asia

27

27

"m‘ NEWS FOR NERDS. STUFF THAT MATTE

» Login | Create Account | Help | Subscribe | Firehose

Maln
Apple
AskSlashdot
Books
Developers

Hardware
IT

Idle

Index

Interviews

http://www.akamai.com/html/technology/nui/news/index.html

Political s Scale Up For Election Traffic

Posted by timothy on Tuesday November 04, @12:15PM
from the hearken.are those trumpets dept
miller50 writes

“News sites and political blogs are expecting extraordinary traffic tonight as
Amenicans track results of the Presidential election, and are scaling the

structure to meet the challenge. Yahoo anticipates ds Election Neght traffic may
yme seen in 2004, when it had 80 million page wews on Election
Day and 142 million more visits the following day. Hosting companies say customers
have been ordering extra servers and load balancing services, while content delvery
networks are also expecting a busy night. Will traffic approach record levels?
Akamai's
metric to watch.”

& times the v

which tracks traffic to s customer news sites, is one

&
-
S

28

28

Content Distribution Networks &
Server Selection

* Replicate content on many servers

» Challenges
* How to replicate content
* Where to replicate content
How to find replicated content
How to choose among known replicas
* How to direct clients towards replica

"«

29

29

Server Selection “

* Which server?
» Lowest load = to balance load on servers

» Best performance - to improve client performance
» Based on Geography? RTT? Throughput? Load?

* Any alive node - to provide fault tolerance

» How to direct clients to a particular server?

» As part of routing = anycast, cluster load balancing
* Not covered ®

+ As part of application > HTTP redirect

* As part of naming - DNS

30

30

Application Based

"«

« HTTP supports simple way to indicate that Web page has moved

(30X responses)

« Server receives Get request from client

« Decides which server is best suited for particular client and object

+ Returns HTTP redirect to that server
« Can make informed application specific decision
+ May introduce additional overhead ->

multiple connection setup, name lookups, etc.

+ While good solution in general, but...

« HTTP Redirect has some design flaws — especially with current

browsers

31

31

Naming Based

"«

+ Client does name lookup for service

* Name server chooses appropriate server address
+ A-record returned is “best” one for the client

 What information can name server base decision

on?

» Server load/location - must be collected
* Information in the name lookup request

« Name service

client - typically the local name server for client

32

32

How Akamai Used to Work “

+ Clients fetch html document from primary server
» E.qg. fetch index.html from cnn.com
» URLs for replicated content are replaced in html

+ E.g. replaced with

+ Client is forced to resolve aXYZ.g.akamaitech.net
hosthame

33

33

How Akamai Works

"«

+ Clients delegate domain to akamai
* ibm.com. 172800 IN NS usw2.akam.net.

+ CNAME records eventually lead to

+ Something like e2874.x.akamaiedge.net. For IBM

* Or a1686.g.akamai.net for IKEA....

+ Client is forced to resolve
eXYZ.x.akamaiedge.net. hostname

34

34

How Akamai Works “

How is content replicated?
Akamai only replicates static content (*)
Modified name contains original file name

Akamai server is asked for content
* First checks local cache

* If not in cache, requests file from primary server and
caches file

* (At least, the version we' re talking about today. Akamai actually lets sites write
code that can run on Akamai’ s servers, but that’ s a pretty different beast)

35

35

How Akamai Works “

* Root server gives NS record for akamai.net
+ Akamai.net name server returns NS record for
g.akamaitech.net

« Name server chosen to be in region of client’ s name
server

« TTL is large
+ G.akamaitech.net nameserver chooses server in
region

» Should try to chose server that has file in cache - How

to choose?
* Uses aXYZ name and hash
* TTL is small - why?

36

36

A R

'How Akamai Works “.

cnn.com (content provider)

DNS root server Akamai server
- :

£ £l

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

el

End-user

Get /cnn.com/foo.jpg

37

37

i M gt

Akamai — Subsequent Requests

cnn.com (content provider) DNS root server Akamai server

« ¥ E

1
Akamai high-level
DNS server

© Akamai low-level DNS
server
Nearby matching

Akamai server
el

End-user
Get /cnn.com/foo.jpg

38

38

Consistent Hashing Reminder... “

» Finding a nearby server for an object in a CDN
uses centralized knowledge.

» Consistent hashing can also be used in a
distributed setting

» Consistent Hashing to the rescue.

39

39

Summary “

* DNS
« Content Delivery Networks move data closer to
user, maintain consistency, balance load

+ Consistent Caching maps keys AND buckets into the
same space

+ Consistent caching can be fully distributed, useful in
P2P systems using structured overlays

40

40

A rose by any other name.... “,

* “DNS Is Sexy: Making Thin]gs Go While Making It Fun”
(http://dyn.com/dns-is-sexy/)

+ If you can convince yourself that something like DNS is sexy, then
Dyn must be a great place to work

+ TheGoodThingAboutDomainNameJokesISThatAllTheGoodShor
tOnesHaveBeenTold.com unless you're being creati.ve

G0ugl“e

*3 Tout

& Actualités
B Vidéos
W Biogs

¥ Plus

Recherche sur le Web

Rechercher les pages
en frangais

Pages en langue
étrangére traduites

wikileaks Rechercher
Environ 412 000 000 résukats (0.08 secondes) Recherche avancée
t4 WikiLeaks: |a traque d'Assange semble avoir des *motivations ... - Publié il y a 1 heure
LONDRES — La traque de Julian Assange, le fondateur du site internet WikiLeaks, qui
: est recherché par la police suédoise dans une affaire de viol, ...
. AFP - Autres articles (86)
LExpress Attagues contre Google: de hauts responsables chinols Impliqués ...

AFP - Autres articles (46)

WikiLeaks 14:53 - [Traduire cette page |
28 Nov 2010 ... WikiLeaks is a non-profit media organization i to bringing i
8 athe public. We provide an innovative, ...

D ard-inforratie
213.251.145.96/ - En cach

WikiLeaks - Wikipédia 41

41

Web Proxy Caches

"«

» User configures

browser: Web
accesses via
cache

* Browser sends all
HTTP requests to

cache

+ Object in cache: cache
returns object

+ Else cache requests
object from origin

server, then returns
object to client

origin
server

origin
server

42

42

No Caching Example (1)

Assumptions

» Average object size = 100,000 bits

+ Avg. request rate from institution’ s
browser to origin servers = 15/sec

» Delay from institutional router to
any origin server and back to router
=2sec

Consequences
« Utilization on LAN = 15%
« Utilization on access link = 100%

« Total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + milliseconds

"«

i 44
j fominet j

1.5 Mbps
access link

institutional
network

origin
servers

10 Mbps LAN

43

43

No Caching Example (2) “.

Possible solution

» Increase bandwidth of access link
to, say, 10 Mbps

« Often a costly upgrade

Consequences
+ Utilization on LAN = 15%

« Utilization on access link = 15%

+ Total delay = Internet delay + access
delay + LAN delay
= 2 sec + msecs + msecs

@ origin

@\ servers
public

Internet _@

10 Mbps
access link

institutional

i 10 Mbps LAN

44

44

Problems

"«

Over 50% of all HTTP objects are uncacheable — why?
Not easily solvable

+ Dynamic data - stock prices, scores, web cams

+ CGl scripts = results based on passed parameters

Obvious fixes
« SSL - encrypted data is not cacheable

+ Most web clients don’ t handle mixed pages well >many generic

objects transferred with SSL
» Cookies - results may be based on passed data

« Hit metering = owner wants to measure # of hits for revenue, etc.

45

45

Caching Proxies — Sources for Misses “

« Capacity
* How large a cache is necessary or equivalent to infinite
* On disk vs. in memory - typically on disk

« Compulsory
* First time access to document

* Non-cacheable documents
» CGl-scripts
» Personalized documents (cookies, etc)
* Encrypted data (SSL)

« Consistency
* Document has been updated/expired before reuse

46

46

Measurements of DNS

"«

* No centralized caching per site
« Each machine runs own caching local server

* Why is this a problem?

* How many hosts do we need to share cache? - recent studies

suggest 10-20 hosts

+ Is this good or bad?

* Most Internet traffic was Web with HTTP 1.0

“Hit rate for DNS = 80% —> 1 - (#DNS/#connections)

+ What does a typical page look like? > average of 4-5 imbedded

objects = needs 4-5 transfers
» This alone accounts for 80% hit rate!

Lower TTLs for A records does not affect performance
DNS performance really relies more on NS-record caching

47

47

DNS Experience

23% of lookups with no answer

"«

» Retransmit aggressively - most packets in trace for

unanswered lookups!

» Correct answers tend to come back quickly/with few retries

+ Inverse lookups and bogus NS records

Worst 10% lookup latency got much worse
» Median 85->97, 90th percentile 447>1176

happening to caching?

10 - 42% negative answers - most = no name exists

Increasing share of low TTL records = what is

48

48

DNS Experience “

Hit rate for DNS = 80% —> 1-(#DNS/#connections)
* Most Internet traffic is Web

+ What does a typical page look like? - average of 4-5
imbedded objects - needs 4-5 transfers - accounts
for 80% hit rate!

70% hit rate for NS records - i.e. don’t go to
root/gTLD servers

* NS TTLs are much longer than A TTLs

* NS record caching is much more important to scalability
Name distribution = Zipf-like = 1/x2

A records = TTLs = 10 minutes similar to TTLs =
infinite

10 client hit rate = 1000+ client hit rate

49

49

Mail Addresses

"«

* MX records point to mail exchanger for a name

* E.g. mail.acm.org is MX for acm.org
+ Addition of MX record type proved to be a

challenge

* How to get mail programs to lookup MX record for mail

delivery?

* Needed critical mass of such mailers

50

50

Recursive DNS Name Resolution “,

Root unnamed root

Server * Nonlocal LOOkUp
3/ s + Recursively from
edy root server
y downward

» Results passed
up
someplace
’ + Caching

e * Results stored in

208.216.181.15 caches along
each hop
+ Can shortcircuit

lookup when
cached entry
present
greatwhite
128.2.220.10

51

51

lterative DNS Name Resolution “,

Root
Server

Server
4
ck
’ « Caching

CS www .

208.216.181.15 Local server builds
up cache of

unnamed root * Nonlocal Lookup

+ At each step,
server returns
name of next
server down

* Local server
directly queries
each successive
server

Local
Server

intermediate
translations
* Helps in resolving
names
XXX.cs.cmu.edu,
greatwhite yy.cmu.edu, and
128.2.220.10 z.edu

ics

52

52

DNS Hack #2: Blackhole Lists

"«

 First: Mail Abuse Prevention System (MAPS)

 Paul Vixie, 1997

+ Today: Spamhaus, spamcop, dnsrbl.org, etc.

Different addresses refer to
different reasons for blocking

% dig 91.53.195.211.bl.spamcop.net /

;3 ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 2100 IN A 127.0.0.2

;3 ANSWER SECTION:
91.53.195.211.bl.spamcop.net. 1799 IN TXT "Blocked - see
http://www.spamcop.net/bl.shtm1?211.195.53.91"

53

53

Consistent Hashing “.

* Main idea:
* map both and nodes to the same (metric) identifier space
« find a “rule” how to assign keys to nodes

Ring is one option.

54

Consistent Hashing

"«

« The consistent hash function assigns each node
and key an m-bit identifier using SHA-1 as a base

hash function

* Node identifier: SHA-1 hash of IP address

+ Key identifier: SHA-1 hash of key

55

55

|dentifiers “,

» m bit identifier space for both keys and nodes
* Key identifier: SHA-1(key)

Key="“LetltBe” —SHA-L . [D=60

* Node identifier: SHA-1(IP address)
[P="198.10.10.1" —SHA=L - [D=123

*How to map key IDs to node IDs?

56

56

Consistent Hashing Example

"«

Rule: A key is stored at its successor: node with next higher or equal ID

1P="198.10.10.1" 0 K5
\
N123 K20
Circular 7-bit
K101 ID space N32
Key="LetltBe”
N0 ——&e0

57

57

Consistent Hashing Properties

"«

* Load balance: all nodes receive roughly the

same number of keys

* For N nodes and K keys, with high probability

+ each node holds at most (1+¢)K/N keys

* (provided that K is large enough compared to N)

58

58

Load Balance

Redirector knows all CDN server lds
Can track approximate load (or delay)

To balance load:

+ W,;=Hash(URL, ip of s;) for all i

« Sort W, from high to low

« find first server with low enough load

Benefits?

How should “load” be measured?

"«

59

59

