15-440 Distributed Systems

CDN & Peer-to-Peer

Server Selection “

* Which server?
» Lowest load = to balance load on servers

» Best performance - to improve client performance
» Based on Geography? RTT? Throughput? Load?

* Any alive node - to provide fault tolerance

» How to direct clients to a particular server?

» As part of routing = anycast, cluster load balancing
* Not covered ®

+ As part of application > HTTP redirect

* As part of naming > DNS

How Akamai Works

"«

+ Clients delegate domain to akamai
* ibm.com. 172800 IN NS usw2.akam.net.

+ CNAME records eventually lead to

+ Something like e2874.x.akamaiedge.net For IBM

* Or a1686.g.akamai.net for IKEA....

» Client is forced to resolve eXYZ.x.akamaiedge.net

hostname

A R

'How Akamai Works “.

cnn.com (content provider)

DNS root server Akamai server
- :

£ £l

Akamai high-level
DNS server

Akamai low-level DNS
server

Nearby matching
Akamai server

el

End-user

Get /cnn.com/foo.jpg

i M gt

Akamai — Subsequent Requests

cnn.com (content provider) DNS root server Akamai server

« ¥ E

1
Akamai high-level
DNS server

© Akamai low-level DNS
server
Nearby matching

Akamai server
el

End-user

Get /cnn.com/foo.jpg

How Akamai Works “

How is content replicated?
Akamai only replicates static content (*)
Modified name contains original file name

Akamai server is asked for content
* First checks local cache

* If not in cache, requests file from primary server and
caches file

* (At least, the version we' re talking about today. Akamai actually lets sites write
code that can run on Akamai’ s servers, but that’ s a pretty different beast)

How Akamai Works “

* Root server gives NS record for akamai.net

+ Akamai.net name server returns NS record for
x.akamaiedge.net

« Name server chosen to be in region of client’ s name
server

« TTL is large
» X.akamaiedge.net nameserver chooses server in
region
» Should try to chose server that has file in cache - How
to choose?
* Uses eXYZ name and consistent hashing
* TTL is small - why?

Summary “

* DNS
« Content Delivery Networks move data closer to
user, maintain consistency, balance load

+ Consistent hashing maps keys AND buckets into the
same space

Outline

"«

Content Distribution Networks

P2P Lookup Overview

Centralized/Flooded Lookups

Routed Lookups — Chord

Scaling Problem “

* Millions of clients = server and network meltdown

10

10

P2P System

"«

» Leverage the resources of client machines (peers)
+ Computation, storage, bandwidth

App end-point vs. Infrastructure vs. waypoints

Transition: infrastructure -> remove them

11

Peer-to-Peer Networks “

+ Typically each member stores/provides access to
content
 Basically a replication system for files

+ Always a tradeoff between possible location of files and
searching difficulty

+ Peer-to-peer allow files to be anywhere - searching is
the challenge

+ Dynamic member list makes it more difficult

12

12

The Lookup Problem “
N
N; 2 N3
Key="title”
Value=MP3 data... .
. Client
PUBliSher Lookup(“title™)
N N
4 NS 6
13
1000s of nodes.

Set of nodes may change...

13

Searching

* Needles vs. Haystacks

"«

« Searching for top 40, or an obscure punk track from

1981 that nobody’ s heard of?
« Search expressiveness

* Whole word? Regular expressions? File names?

Attributes? Whole-text search?
* (e.g., p2p gnutella or p2p google?)

14

14

Framework

"«

« Common Primitives:
» Join: how to | begin participating?
* Publish: how do | advertise my file?
+ Search: how to | find a file?
* Fetch: how to | retrieve a file?

15

15

Outline

"«

Content Distribution Networks

P2P Lookup Overview

Centralized/Flooded Lookups

Routed Lookups — Chord

16

16

Napster: Overiew

"«

* Centralized Database:
» Join: on startup, client contacts central server
» Publish: reports list of files to central server

« Search: query the server => return someone that

stores the requested file
* Fetch: get the file directly from peer

17

17

Napster: Publish

"«

2 2 [(e
‘ & &
haas insert(X,
123.2.21.23)
2 |
G2 Publish /
2 2
| have X, Y, and Z! &2 aa=

123.2.21.23

18

18

Napster: Search “

123.2.0.18 2 [} Qe
L8
_S_e>arch(A) &
+1123.2.0.18
Reply
Lo

Where is file A? &&=

19

19

Napster: Discussion

"«

* Pros:
« Simple

» Search scope is O(1)
+ Controllable (pro or con?)

 Cons:

« Server maintains O(N) State
+ Server does all processing

+ Single point of failure

20

20

“Old” Gnutella: Overview “

Query Flooding:

« Join: on startup, cllent contacts a few other nodes;
these become its “neighbors”
* Publish: no need
+ Search: ask neighbors, who ask their neighbors, and
so on... when/if found, reply to sender.
« TTL limits propagation
* Fetch: get the file directly from peer

21

21

Gnutella: Search

| have file A.

| have file A. ..<—‘ [oo

7 s

_

Where is file A? &&2

"«

22

22

Gnutella: Discussion “

Pros:

* Fully de-centralized

» Search cost distributed

» Processing @ each node permits powerful search semantics

 Cons:

» Search scope is O(N)
» Search time is O(??77?)
» Nodes leave often, network unstable

« TTL-limited search works well for haystacks.

+ For scalability, does NOT search every node. May have to
re-issue query later

23

23

Flooding: Gnutella, Kazaa “

* Modifies the Gnutella protocol into two-level hierarchy
+ Hybrid of Gnutella and Napster
* Supernodes
* Nodes that have better connection to Internet
+ Act as temporary indexing servers for other nodes
+ Help improve the stability of the network
+ Standard nodes
« Connect to supernodes and report list of files
+ Allows slower nodes to participate
« Search
+ Broadcast (Gnutella-style) search across supernodes
+ Disadvantages
+ Kept a centralized registration - allowed for law suits ®

24

24

BitTorrent: Overview “

« Swarming:
« Join: contact centralized “tracker” server, get a list of
peers.
* Publish: Run a tracker server.

+ Search: Out-of-band. E.g., use Google to find a tracker
for the file you want.

* Fetch: Download chunks of the file from your peers.
Upload chunks you have to them.

 Big differences from Napster:
* Chunk based downloading

+ “few large files” focus
* Anti-freeloading mechanisms

25

25

BitTorrent: Publish/Join

‘ Tracker

"«

NN

<

2—92

26

26

BitTorrent: Fetch

"«

BitTorrent: Sharing Strategy “

« Employ “Tit-for-tat” sharing strategy
* A is downloading from some other people
» A will let the fastest N of those download from him

» Be optimistic: occasionally let freeloaders download
+ Otherwise no one would ever start!

+ Also allows you to discover better peers to download from when
they reciprocate

* Goal: Pareto Efficiency

« Game Theory: “No change can make anyone better off
without making others worse off”

* Does it work? (not perfectly, but perhaps good
enough?)

28

28

BitTorrent: Summary

"«

* Pros:

» Works reasonably well in practice

* Gives peers incentive to share resources; avoids

freeloaders
 Cons:

+ Pareto Efficiency relative weak condition

» Central tracker server needed to bootstrap swarm

« Alternate tracker designs exist (e.g. DHT based)

29

29

Outline

"«

Content Distribution Networks

P2P Lookup Overview

Centralized/Flooded Lookups

Routed Lookups — Chord

30

30

DHT: Overview (1)

"«

« Goal: make sure that an item (file) identified is always

found in a reasonable # of steps

« Abstraction: a distributed hash-table (DHT) data

structure
* insert(id, item);
+ item = query(id);

* Note: item can be anything: a data object, document, file,

pointer to a file...

* Implementation: nodes in system form a distributed

data structure

+ Can be Ring, Tree, Hypercube, Skip List, Butterfly Network,

31

31

DHT: Overview (2)

"«

+ Structured Overlay Routing:

+ Join: On startup, contact a “bootstrap” node and integrate yourself

into the distributed data structure; get a node id

+ Publish: Route publication for file id toward a close node id along

the data structure

+ Search: Route a query for file id toward a close node id. Data

structure guarantees that query will meet the publication.
+ Fetch: Two options:

+ Publication contains actual file = fetch from where query stops

+ Publication says “I have file X" = query tells you 128.2.1.3
IP routing to get X from 128.2.1.3

has X, use

32

32

DHT: Consistent Hashing

Node 105

"«

Key 5——— K5
N105 /\ﬁ

Circular ID space

B N32

oo =
AN
K80

A key is stored at its successor: node with next higher ID

33

33

Routing: Chord Basic Lookup

N120
—{N10

e
N105

“N90 has K80”

\ N60

K80|N90

"«

“Where is key 80?’

N32

34

34

Routing: Finger table - Faster Lookups

"«

35

35

DHT: Chord Summary

"«

* Routing table size?
* Log N fingers
* Routing time?

» Each hop expects to 1/2 the distance to the
desired id => expect O(log N) hops.

36

36

DHT: Example - Chord “

» Associate to each node and file a unique id in an
uni-dimensional space (a Ring)
* E.g., pick from the range [0...2"]
* Usually the hash of the file or IP address
* Properties:

* Routing table size is O(log N) , where N is the total
number of nodes

* Guarantees that a file is found in O(log N) hops

37

37

Routing: Chord “

» Associate to each node and item a unique id in an
uni-dimensional space
* Properties

* Routing table size O(log(N)) , where N is the total
number of nodes

* Guarantees that a file is found in O(log(N)) steps

38

38

Routing: Chord Summary “

« Assume identifier space is 0...2M

* Each node maintains

* Finger table

» Entry jin the finger table of n is the first node that succeeds or
equals n + 2!

* Predecessor node
» An item identified by id is stored on the successor
node of id

39

39

Routing: Chord Example

* Assume an
identifier space
0.7

* Node n1:(1)
joins—>all entries
in its finger table
are initialized to
itself

Succ. Table

i lid+2'|succ

0
1 3 |1
2

40

40

Routing: Chord Example

* Node n2:(2) joins

Succ. Table

id+2'

succ

0
1
2

Succ. Table

id+2'

succ

0
1
2

41

41

Routing: Chord Example “

Succ. Table

i lid+2'[succ

* Nodes n3:(0), n4:(6) join

0
1
2

Succ. Table

i lid+2'|succ

o 22

1 3 | 6

Succ. Table 25|68
j lid+2'|succ

Succ. Table

id+2' [succ

0
1
2

42

Routing: Chord Examples “

* Nodes: n1:(1), n2(3),

Succ. Table jtems
n3(0), n4(6) é)id+12' SL;CC

1M1 2| 2

* ltems: f1:(7), f2:(2) 2| a6

Succ. Table tems

id+2'|succ

i
of 2 |2
11 3 | 6
2| 5|6
Succ. Table
i lid+2 [succ
of 710
11l o | o Succ. Table
2 i lid+2'|succ
0] 36
1 4 | 6
2| 6|6

43

Routing: Query

"«

» Upon receiving a query
for item id, a node

* Check whether stores
the item locally

* |If not, forwards the
query to the largest
node in its successor

table that does not
exceed id

Succ. Table

id+2' [succ

N = o~
o
o

Succ. Table

id+2'

succ

N = o~

Items

7

id+2'|succ

cc. Table tems

N = O™

Succ. Table

id+2' [succ

N = O™

36
4 |6
6|6

44

44

DHT: Discussion

"«

* Pros:

* Guaranteed Lookup
* O(log N) per node state and search scope

 Cons:

« Supporting non-exact match search is hard

45

45

What can DHTs do for us?

Distributed BitTorrent tracket
Distributed object lookup

» Based on object ID
De-centralized file systems

* CFS, PAST, lvy

Application Layer Multicast

+ Scribe, Bayeux, Splitstream
Databases

* PIER

"«

46

46

P2P: Summary “

. Manhy different styles; remember pros and cons of
eac

+ centralized, flooding, swarming, unstructured and structured

routing

* Lessons learned:

Single points of failure are very bad

Flooding messages to everyone is bad

Not all nodes are equal

Need incentives to discourage freeloading

Structure can provide theoretical bounds and guarantees
Underlying network topology is important

Privacy and security are important

47

When are p2p / DHTs useful? “

« Caching and “soft-state” data

* Works well! BitTorrent, KaZaA, etc., all use peers as
caches for hot data

* Finding read-only data
+ Limited flooding finds hay
* DHTs find needles

« BUT...

48

48

A Peer-to-peer Google? “

« Complex intersection queries (“the” + “who”)
+ Billions of hits for each term alone
» Sophisticated ranking

* Must compare many results before returning a subset
to user

* Very, very hard for a DHT / p2p system
* Need high inter-node bandwidth
* (This is exactly what Google does - massive clusters)

49

49

Writable, persistent p2p “

* Do you trust your data to 100,000 monkeys?

* Node availability hurts
+ Ex: Store 5 copies of data on different nodes

+ When someone goes away, you must replicate the data
they held

* Hard drives are *huge*, but home upload bandwidth is
tiny - perhaps 50 Gbytes/day

+ Takes many days to upload contents of 1TB hard drive.
Very expensive leave/replication situation!

50

50

Aside: Consistent Hashing [Karger 97] “

Node 105

Key 5—— K5
N105 3
Circular 7-bit N32
ID space
N90
AN
K80

A key is stored at its successor: node with next higher ID

51

51

Flooded Queries (Gnutella) “

N, NZ\N Lookup(“title”)
f ~_ % Client
Publisher@ 4

Key="title”
Value=MP3 data...

N6‘/\N7._/N8
Ng

Robust, but worst case O(N) messages per lookup

52

52

Flooding: Old Gnutella N

« On startup, client contacts any servent (server +
client) in network
+ Servent interconnection used to forward control
(queries, hits, etc)
+ |dea: broadcast the request

* How to find a file:
+ Send request to all neighbors
* Neighbors recursively forward the request

+ Eventually a machine that has the file receives the
request, and it sends back the answer

* Transfers are done with HTTP between peers

53

53

Flooding: Old Gnutella N

« Advantages:
» Totally decentralized, highly robust

» Disadvantages:

* Not scalable; the entire network can be swamped with
request (to alleviate this problem, each request has a
TTL)

» Especially hard on slow clients

» At some point broadcast traffic on Gnutella exceeded 56kbps —
what happened?

* Modem users were effectively cut off!

54

54

Flooding: Old Gnutella Details “

+ Basic message header
* Unique ID, TTL, Hops
* Message types
+ Ping — probes network for other servents
+ Pong - response to ping, contains IP addr, # of files, # of Kbytes
shared
* Query — search criteria + speed requirement of servent

» QueryHit — successful response to Query, contains addr + port to
transfer from, speed of servent, number of hits, hit results, servent
ID

« Push —request to servent ID to initiate connection, used to
traverse firewalls

* Ping, Queries are flooded
* QueryHit, Pong, Push reverse path of previous message

55

55

Flooding: Old Gnutella Example

"«

Assume: m1’ s neighbors are m2 and m3;
m3’ s neighbors are m4 and m5;...

56

56

Simple, but O(N) state and a single point of failure

Centralized Lookup (Napster) “

SetLoc(“title”, N4) N, N2 N
Publisher@N4 DB Lookup(“title™)
Key="title
Value=MP3 data... N
Ng 8

57

O(N) state means its hard to keep the state up to date.

57

Routed Queries (Chord, etc.) “

Nl'& N
3 \Client
Publisher —— N4 Lookup(“title”™)
Key="title” \
Value=MP3 data...
Ne N, Ng
N

58

Challenge: can we make it robust? Small state? Actually find stuff in a changing
system?

Consistent rendezvous point, between publisher and client.

