9%, | 15-440 Distributed Systems

RAID

Thanks to Greg Ganger and Remzi Arapaci-Dusseau for
slides

Replacement Rates

"«

HPC1 cOoM1 CcCOoM2

Component Component Component %

Hard drive 30.6 Power supply 34.8 Hard drive 491
Memory 28.5 Memory 201 Motherboard 234
Misc/Unk 14.4 Hard drive 18.1 Power supply 10.1
CPU 12.4 Case 1.4 RAID card 41

motherboard 4.9 Fan 8 Memory 34

Controller 29 CPU 2 SCSI cable 2.2

QsSwW 1.7 SCSI Board 0.6 Fan 2.2

Power supply 1.6 NIC Card 1.2 CPU 2.2

MLB 1 LV Pwr Board 0.6 CD-ROM 0.6

SCSI BP 0.3 CPU heatsink 0.6 Raid Controller 0.6

Outline

"«

» Using multiple disks
* Why have multiple disks?
* problem and approaches

* RAID levels and performance

+ Estimating availability

Motivation:
Why use multiple disks?

"«

+ Capacity
+ More disks allows us to store more data
+ Performance
» Access multiple disks in parallel
« Each disk can be working on independent read or write
« Overlap seek and rotational positioning time for all
+ Reliability
+ Recover from disk (or single sector) failures
« Will need to store multiple copies of data to recover

+ So, what is the simplest arrangement?

Just a bunch of disks (JBOD)

N
N

A0

N

Al

N———"

A2

Ne—

A3
N1

<
MNe—]

B0
N1

B1
N1

B2

Ne—

B3
N

* Yes, it's a goofy name

* industry really does sell “JBOD enclosures”

N
N]

Co

N—

Cl

N—

C2

Ne—

C3
N1

-

DO
N1

D1
N

D2
N1

D3
N1

"«

Disk Striping “

* Interleave data across multiple disks
+ Large file streaming can enjoy parallel transfers

* High throughput requests can enjoy thorough load
balancing

« If blocks of hot files equally likely on all disks (really?)

| | | | | | |

File Foo: | I I | I I |

stripe unit
or block

J

Stripe |

Now, What If A Disk Fails?

"«

* In a JBOD (independent disk) system
» one or more file systems lost

* In a striped system
+ a part of each file system lost

« Backups can help, but
* backing up takes time and effort

* backup doesn’t help recover data lost during that day

* Any data loss is a big deal to a bank or stock
exchange

_Tolerating and masking disk
failures

"«

« If a disk fails, it's data is gone

* may be recoverable, but may not be
* To keep operating in face of failure

* must have some kind of data redundancy
« Common forms of data redundancy

* replication

+ erasure-correcting codes

* error-correcting codes

Redundancy via replicas

"«

« Two (or more) copies
* mirroring, shadowing, duplexing, etc.
» Write both, read either

N N
N— N—

0 2
N~ N
| 3

Mirroring & Striping i‘.

* Mirror to 2 virtual drives, where each virtual drive is
really a set of striped drives
» Provides reliability of mirroring
» Provides striping for performance (with write update costs)

10

10

Implementing Disk Mirroring “

+ Mirroring can be done in either software or hardware
+ Software solutions are available in most OS’s
* Windows2000, Linux, Solaris

» Hardware solutions
+ Could be done in Host Bus Adaptor(s)
+ Could be done in Disk Array Controller

stober 2010, Greg Ganger ©

11

Lower Cost Data Redundancy “

 Disk failures are self-identifying (a.k.a. erasures)
» Don't have to find the error

« Fact: N-error-detecting code is also N-erasure-
correcting
» Error-detecting codes can't find an error, just know its there
» But if you independently know where error is, allows repair

« Parity is single-disk-failure-correcting code
« recall that parity is computed via XOR
« it's like the low bit of the sum

12

12

Simplest approach: Parity Disk

» Capacity: one
extra disk needed > X 5
per stripe

13

13

Updating and using the parity

Fault-Free Read

"«

EIII

Fault-Free Write

o}

Degraded Read Degraded Write

S

X |

14

Performance

* Suppose 1 drive gives bandwidth B
Fault-Free Read = 3B

Degraded Read = 1B

Fault-Free Write =0.5B

"«

» But can do 2B Fault-Free Read at the same time

Degraded Write=1B

15

15

The parity disk bottleneck

"«

» Reads go only to the data disks
» But, hopefully load balanced across the disks

 All writes go to the parity disk

* And, worse, usually result in Read-Modify-Write

sequence
+ So, parity disk can easily be a bottleneck

16

16

Solution: Striping the Parity

"«

* Removes parity disk bottleneck

C D L3 3

A A A

N MN——1 M

B B B

17

Outline

"«

» Using multiple disks
* Why have multiple disks?
* problem and approaches

* RAID levels and performance

+ Estimating availability

18

18

RAID Taxonomy

"«

* Redundant Array of Inexpensive Independent Disks
+ Constructed by UC-Berkeley researchers in late 80s (Garth Gibson)

* RAID 0 - Coarse-grained Striping with no redundancy
* RAID 1 - Mirroring of independent disks

* RAID 3 - Fine-grained data striping plus parity disk
* RAID 4 — Coarse-grained data striping plus parity disk

* RAID 5 - Coarse-grained data striping plus striped parity

19

19

RAID-0: Striping

Disk:
Offset within disk:

"«

How to calculate where chunk # lives?

« Stripe blocks across disks in a “chunk” size
* How to pick a reasonable chunk size?

Disk = chunk % 4
Offset = chunk DIV 4

20

RAID-0: Striping

Evaluate for D disks
Capacity: How much space is wasted?

"«

Performance: How much faster than 1 disk?

Reliability: More or less reliable than 1 disk?

Capacity = N 2> 0% waste
Reliability = 0 - every failures causes data loss
Performance = large reads can use all disks - N times BW

21

RAID-1: Mirroring N

* Motivation: Handle disk failures
» Put copy (mirror or replica) of each chunk on another disk

Capacity:
Reliability:
Performance:

Capacity = 72 total (worse with more replicas)

Read performance = 2x for hot items, aggregate can be N times single drive
Write performance = V2 drive for single item, %z N for total array

Reliability

RAID-4: Parity “

Motivation: Improve capacity
Idea: Allocate parity block to encode info about blocks
« Parity checks all other blocks in stripe across other disks
Parity block = XOR over others (gives “even” parity)

+ Example: 0 1 0 > Parity value?

How do you recover from a failed disk?

+ Example: x 0 0 and parity of 1

+ What is the failed value?

23

RAID-4: Parity

Capacity:
Reliability:
Performance:
* Reads
+ Writes: How to update parity block?
+ Two different approaches

Small number of disks (or large write):
Large number of disks (or small write):

« Parity disk is the bottleneck

24

RAID-5: Rotated Parity N

Rotate location of parity across all disks

+ Capacity:

* Reliability:

* Performance:
* Reads:

+ Writes:
« Still requires 4 |/Os per write, but not always to same parity disk

25

"«

Comparison
RAID-0 RAID-1 RAID-4 RAID-5
Capacity N N/2 N -1 N -1
Reliability 0 1 (for sure) 1 1
% (if lucky)
Throughput
Sequential Read N-S (N-1)-§ (N-1)-8
Sequential Write N-S (N/2)-S (N=-1)-§ (N-1)-8
Random Read N-R N-R (N—-1)-R N-R
Random Write N-R (N/2)-R TR IR
Latency
Read D D D D
Write D D 2D 2D

Key takeaways: writes are expensive, small writes are
really expensive! File systems may help (see LFS)

26

26

Outline

"«

» Using multiple disks
* Why have multiple disks?
* problem and approaches

* RAID levels and performance

+ Estimating availability

27

27

Sidebar: Availability metric “

» Fraction of time that server is able to handle requests
» Computed from MTBF and MTTR (Mean Time To Repair)

. . — MTBF
Availability —
MTBF+MTTR
Inst_alled Fix.ed Fix_ed Fix_ed
i TBF, TTR, BF, TTR2§ TBF, TTRé

Available during these 3
t periods of time.

28

28

How often are failures? “

« MTBF (Mean Time Between Failures)
* MTBF g ~ 1,200,00 hours (~136 years, <1% per year)
* MTBF nyti-disk system = Mean time to first disk failure
» which is MTBF 4, / (number of disks)

» For a striped array of 200 drives
* MTBF,,, = 136 years / 200 drives = 0.65 years

29

29

Reliability without rebuild N

« 200 data drives with MTBF 4,6
* MTTDL,ya, = MTBF 4, / 200

« Add 200 drives and do mirroring
* MTBF ;i = (MTBF e / 2) + MTBF g6 = 1.5 * MTBF i\
* MTTDL,ay = MTBF ; / 200 = MTBF 4 / 133

« Add 50 drives, each with parity across 4 data disks
« MTBF = (MTBF 4o/ 5) + (MTBF 0 / 4) = 0.45 * MTBF 4,0
* MTTDL,, = MTBF g/ 50 = MTBF g5 / 111
 approximate see note

30

The last step here is an approximation that an array is a single reliable "virtual
drive”. Note that this doesn't quite work in some cases.

The key issue (from the original RAID
paper http://www.cs.cmu.edu/~garth/RAIDpaper/Patterson88.pdf):

"The second step is the reliability of the whole system, which is approximately
(since the MTTF_group is not distributed exponentially) MTTF_group/num_groups"

The problem is that this estimate breaks down dramatically at large numbers. For
example:

What is the mean time to data loss for a system with 100,000 disk, which are
organized into 10,000 10-disk arrays, using data striping and striped parity (i.e.,
RAID 5)? Assume each disk has an MTBF of 100 years.

MTBF sy =(100years/10)+(100years/9)=21years
MTTDL = MTBF 44,/10,000 = 19hrs

30

But.... MTBF for a single drive in the entire system is 100yr/100000 drives approx = 8.9 hours.
MTBF for three drives = 3 x 8.9hrs = 26.7hrs which is more than MTBF 45y

The system shouldn’t lose data before three drives fail.

Why? Because MTBF_array / 10000 arrays actually calculates E[time first drive fails in any array]
fails in any array | first drive fails in every array]. However what you really want is E[time first drive
E[time second drive fails in any array | first drive failed in a single array], and the second terms are

30

" Rebuild: restoring redundancy
after failure “‘

» After a drive failure
« data is still available for access
« but, a second failure is BAD

* So, should reconstruct the data onto a new drive
+ on-line spares are common features of high-end disk arrays
» reduce time to start rebuild
+ must balance rebuild rate with foreground performance impact

+ a performance vs. reliability trade-offs
* How data is reconstructed
+ Mirroring: just read good copy

+ Parity: read all remaining drives (including parity) and compute

31

31

E Reliability consequences of
adding rebuild “‘

* No data loss, if fast enough
« That s, if first failure fixed before second one happens

* New math is...
* MTTDL,qay = MTBFysiarive * (1 / prob of 27 failure before repair)
* cee WhICh |S MTTRdrive / MTBFseconddrive

« For mirroring
* MTBFpair = (MTBFdrive / 2) * (MTBFdrive / MTerrive)

« For 5-disk parity-protected arrays
* MTBFset = (MTBFdrive / 5) * ((MTBFdrive /4)/ MTTRdrive)

32

32

Three modes of operation “

* Normal mode
+ everything working; maximum efficiency
* Degraded mode
* some disk unavailable
* must use degraded mode operations
* Rebuild mode
* reconstructing lost disk’s contents onto spare

» degraded mode operations plus competition with
rebuild

33

33

Mechanics of rebuild

"«

« Background process

» use degraded mode read to reconstruct data
« then, write it to replacement disk

* Implementation issues

« Interference with foreground activity and controlling rate

* Rebuild is important for reliability
» Foreground activity is important for performance

» Using the rebuilt disk

» For rebuilt part, reads can use replacement disk
* Must balance performance benefit with rebuild

interference

34

Conclusions “

RAID turns multiple disks into a larger, faster, more
reliable disk

RAID-0: Striping

Good when performance and capacity really matter,
but reliability doesn’ t

RAID-1: Mirroring

Good when reliability and write performance matter,
but capacity (cost) doesn’t

RAID-5: Rotating Parity

Good when capacity and cost matter or workload is
read-mostly

» Good compromise choice

35

Disk Subsystem Load Balancing “.

* 1/O requests are almost never evenly distributed

+ Some data is requested more than other data
+ Depends on the apps, usage, time, ...

+ What is the right data-to-disk assignment policy?
+ Common approach: Fixed data placement
* Your data is on disk X, period!
» For good reasons too: you bought it or you're paying more...
+ Fancy: Dynamic data placement

« If some of your files are accessed a lot, the admin(or even
system) may separate the “hot” files across multiple disks

+ In this scenario, entire files systems (or even files) are manually moved
by the system admin to specific disks

+ Alternative: Disk striping
« Stripe all of the data across all of the disks

36

36

Disk striping details “

* How disk striping works
* Break up total space into fixed-size stripe units
+ Distribute the stripe units among disks in round-robin
+ Compute location of block #B as follows
* disk# = B%N (%=modulo,N = #ofdisks)
* LBN# = B / N (computes the LBN on given disk)

37

37

Hardware vs. Software RAID “

* Hardware RAID
+ Storage box you attach to computer
+ Same interface as single disk, but internally much more
+ Multiple disks

+ More complex controller
+ NVRAM (holding parity blocks)

+ Software RAID
+ OS (device driver layer) treats multiple disks like a single disk
« Software does all extra work

* Interface for both
+ Linear array of bytes, just like a single disk (but larger)

38

RAID 6

« P+Q Redundancy

"«

» Protects against multiple failures using Reed-Solomon codes

» Uses 2 “parity” disks
* P is parity
» Qis a second code

* It's two equations with two unknowns, just make
“biggerbits”

« Group bits into “nibbles” and add different coefficients to each
equation (two independent equations in two unknowns)

« Similar to parity striping
» De-clusters both sets of parity across all drives
» For small writes, requires 6 1/Os
* Read old data, old parity1, old parity2
+ Write new data, new parity1, new parity2

39

39

The Disk Array Matrix

"«

Independent | Fine Striping | Course Striping
None JBOD RAIDO
Replication MFL';?B?Q RAIDO+1
Parity Disk RAID3 RAID4
Striped Parity Gray90 RAID5

40

40

Advanced Issues “.

» What happens if more than one fault?
+ Example: One disk fails plus “latent sector error” on another
* RAID-5 cannot handle two faults
+ Solution: RAID-6 (e.g., RDP) Add multiple parity blocks

* Why is NVRAM useful?

+ Example: What if update 2, don’ t update PO before power failure
(or crash), and then disk 1 fails?
+ NVRAM solution: Use to store blocks updated in same stripe
+ If power failure, can replay all writes in NVRAM
+ Software RAID solution: Perform parity scrub over entire disk

41

