15-440 Distributed Systems

Byzantine Fault Tolerance

Fault Tolerance

"«

« Terminology & Background

» Byzantine Fault Tolerance (Lamport)

« Async. BFT (Liskov)

Fault Tolerance

"«

» Being fault tolerant is strongly related to what are
called dependable systems. Dependability implies

the following:

+ Availability: probability the system operates correctly

at any given moment

* Reliability: ability to run correctly for a long interval of

time

+ Safety: failure to operate correctly does not lead to

catastrophic failures

* Maintainability: ability to “easily” repair a failed system

Failure Models “

Type of failure Description

Crash failure A server halts, but is working correctly until it halts
Omission failure A server fails to respond to incoming requests

Receive omission A server fails to receive incoming messages

Send omission A server fails to send messages
Timing failure A server’s response lies outside the specified time interval
Response failure A server's response is incorrect

Value failure The value of the response is wrong

State transition failure | The server deviates from the correct flow of control
Arbitrary failure A server may produce arbitrary responses at arbitrary times

» A system is said to fail if it cannot meet its
promises. An error on the part of a system’s
state may lead to a failure. The cause of an error
is called a fault.

Process Resilience “.

* Reaching agreement:
« computation results
Electing a leader
» synchronization
« committing to a transaction

* How much replication is necessary?

» A system is k fault tolerant if it can survive faults in k
components and still meet its specifications.

Agreement in Faulty Systems “

Many things can go wrong...
Communication

* Message transmission can be unreliable

* Time taken to deliver a message is unbounded
» Adversary can intercept messages
Processes

+ Can fail or team up to produce wrong results

Agreement very hard, sometime impossible, to
achieve!

Fault Tolerance

"«

« Terminology & Background

» Byzantine Fault Tolerance (Lamport)

« Async. BFT (Liskov)

Agreement in Faulty Systems - 5 “

System of N processes,
where each process j will
provide a value v; to each
other. Some number of these
processes may be incorrect
(or malicious)

oe

the true values sent by each Faulty process
of the correct processes The Byzantine agreement

problem for three nonfaulty
and one faulty process.

Byzantine General’s Problem “.

« The Problem: “Several divisions of the Byzantine army are camped
outside an enemy city, each division commanded by its own general.
After observing the enemy, they must decide upon a common plan of
action. Some of the generals may be traitors, trying to prevent the
loyal generals from reaching agreement.”

+ Goal:

+ All loyal generals decide upon the same plan of action.
« A small number of traitors cannot cause the loyal generals to adopt a bad plan.

« The paper considers a slightly different version from the standpoint of
one general (i.e. process) and multiple lieutenants.

+ Goal:

+ All loyal lieutenants obey the same order.

+ If the commanding general is loyal, the every loyal lieutenant obeys the order
he sends.

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

-What we’ve learnt so far:
tolerate fail-stop failures

"«

+ Traditional RSM tolerates benign failures
* Node crashes
* Network partitions

+ A RSM w/ 2f+1 replicas can tolerate f
simultaneous crashes

10

Why doesn’t traditional RSM work
with Byzantine nodes? “‘

« Cannot rely on the primary to assign seqno
» Malicious primary can assign the same seqno to
different requests!
« Cannot use Paxos for view change

+ Paxos uses a majority accept-quorum to tolerate f
benign faults out of 2f+1 nodes

* Does the intersection of two quorums always contain
one honest node?

+ Bad node tells different things to different quorums!
» E.g. tell N1 accept=val1 and tell N2 accept=val2

11

Paxos under Byzantine faults

Prepare vid=1, myn=N0:1
OK val=null

- 4
NO— — N1

nh=NO:1 prepare vid=1, myn=N0:1 nh=N0:1
OK val=null

"«

12

Paxos under Byzantine faults

accept vid=1, myn=N0:1, val=xyz
(L
(45
=

NO Sk N1

NO decides on

Vidi=xyz hh=N0:1 nh=NO0:1

"«

13

Paxos under Byzantine faults “.

prepare vid=1, myn=N1:1, val=abc

ﬁ OK val=null

N2
v v 1d

NO

NO decid
Vidisxyz . Nh=N0:1 nh=N0:1

14

Paxos under Byzantine faults

NO

NO decides on

Vid1=xyz nh=N0:1 nh=N1:1

— Agreement .

conflict!

"«

i ’ accept vid=1, myn=N1:1, val=abc

N2
Vi ViE Q

N1 decides on

Vid1=abc

15

BFT requires a 2f+1 quorum out
of 3f+1 nodes “

1. State: 2. State: 3. State: 4. State:

A[[T [e-- [A[[[+ [A[TTTeee [[[]]---

Servers 'E

Q‘ -
///
Clients Q g

For liveness, the quorum size must be‘ atmost N - f

16

BFT Quorums “

1. State: 2. State: 3. State: 4. State:
(Al [[[[AlB] [|-+ [B[[[[eoee [B[][[---

Servers '

1]

Clients

For correctness, any two quorums must intersect at least
one honest node: (N-f) + (N-f) - N >= f+1 == N >= 3f+1

17

Impossibility Results n

attack / Yack attack / Yreat

retreat retreat

» No solution for three processes can handle a single traitor.

» In a system with m faulty processes agreement can be achieved
only if there are 2m+1 (more than 2/3) functioning correctly.

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

The resilience of BFT is optimal: at least 3 f + 1 replicas are necessary to provide
the safety and liveness properties under our assumptions when up to f replicas are
faulty. To understand the bound on the number of faulty replicas, consider a
replicated service that implements a mutable variable with read and write
operations. To provide liveness, the service may have to return a reply before the
request is received by more than n- freplicas, since f replicas might be faulty and
not responding. Therefore, the service may reply to a write request after the new
value is written only to a set W with n — f replicas. If later a client issues a read
request, it may receive a reply based on the state of a set R with n— freplicas. R
and W may have only n-2 f replicas in common. Additionally, it is possible that the f
replicas that did not respond are not faulty and, therefore, f of those that responded
might be faulty. As a result, the intersection between R and W may contain only n -
3 fnonfaulty replicas. It is impossible to ensure that the read returns the correct
value unless R and

W have at least one nonfaulty replica in common; therefore n> 3 f.

18

Agreement in Faulty Systems “

» Possible characteristics of the underlying system:

1.Synchronous versus asynchronous systems.

» A system is synchronized if the process operation in
lock-step mode. Otherwise, it is asynchronous.

2.Communication delay is bounded or not.
3.Message delivery is ordered or not.

4.Message transmission is done through unicasting
or multicasting.

19

19

Agreement in Faulty Systems

]

Message ordering

Unordered Ordered
8
2 X Bounded
£ Synchronous
2 X Unbounded
[
2 X X X X Bounded
8 Asynchronous
a X X Unbounded
Unicast Multicast Unicast Multicast

Message transmission

Aejop uonesunwwon

+ Circumstances under which distributed agreement can be
reached. Note that most distributed systems assume that

1. processes behave asynchronously
2. messages are unicast
3. communication delays are unbounded (see red blocks)

20

20

Synchronous, Byzantine world

Asynchronous

Byzantine

"«

21

Agreement in Faulty Systems - 4

"«

« Byzantine Agreement [Lamport, Shostak, Pease,

1982]
« Assumptions:

« Every message that is sent is delivered correctly
» The receiver knows who sent the message

* Message delivery time is bounded

Message ordering

Unordered Ordered
-
K]
H X
£ Synchronous
2 X
"
3 X X X X
8 Asynchronous
o X X
Unicast Multicast Unicast Multicast

Message transmission

Bounded
Unbounded

Bounded

Unbounded

Aejap uopesunwwon

22

22

Byzantine Agreement Algorithm
(oral messages) - 1 “‘

« Phase 1: Each process sends its value to the other
processes. Correct processes send the same
(correct) value to all. Faulty processes may send
different values to each if desired (or no message).

+ Assumptions: 1) Every message that is sent is delivered correctly; 2) The
receiver of a message knows who sent it; 3) The absence of a message

can be detected.

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 23

23

E Byzantine General Problem
Example - 1 “‘

* Phase 1: Generals announce their troop strengths
to each other
1

24

24

E Byzantine General Problem
Example - 2 “‘

« Phase 1: Generals announce their troop strengths
to each other
2

25

25

E Byzantine General Problem
Example - 3 “‘

« Phase 1: Generals announce their troop strengths
to each other

€2

26

26

Byzantine Agreement Algorithm
(oral messages) - 2 “‘

* Phase 2: Each process uses the messages to
create a vector of responses — must be a default
value for missing messages.

« Assumptions: 1) Every message that is sent is delivered correctly; 2)
The receiver of a message knows who sent it; 3) The absence of a
message can be detected.

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 27

27

E Byzantine General Problem

Example - 4

"«

* Phase 2: Each general construct a vector with all
troops

P1

P2

P3

P4

1

2

P1

P2

P3

P4

4

P1

P2

P3

P4

28

28

E Byzantine Agreement Algorithm
(oral messages) - 3 “‘

« Phase 3: Each process sends its vector to all other
processes.

« Phase 4: Each process the information received from
every other process to do its computation.

« Assumptions: 1) Every message that is sent is delivered correctly; 2)
The receiver of a message knows who sent it; 3) The absence of a
message can be detected.

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 29

29

E Byzantine General Problem
Example - 5 “‘

* Phase 3,4: Generals send their vectors to each
other and compute majority voting

P1|P2|P3| Pa

P1| P2 |P3|P4

1] 2 4
e 112 . pa L1 2 4
(11 21 y 4)

1, 2, 7, 4)
P1|P2|P3| Pa
O (P4)P1[1 | 2 4

pal 1] 2 4

(1, 2, , 4) 30

Byzantine Agreement Algorithm
(signed messages) “‘

» Adds the additional assumptions:

+ Aloyal general's signature cannot be forged and any alteration of the contents of the
signed message can be detected.

+ Anyone can verify the authenticity of a general’s signature.

+ Algorithm SM(m):
+ The general signs and sends his value to every lieutenant.

+ Foreachi:

+ Iflieutenant i receives a message of the form v:0 from the commander and he has not
received any order, then he lets Vi equal {v} and he sends v:0:i to every other lieutenant.

+ If lieutenant i receives a message of the form v:0:j1:...:jk and v is not in the set Vi then he
adds v to Vi and if k < m, he sends the message v:0:j1:...:jk:i to every other lieutenant
other than j1,...,jk

+ For each i: When lieutenant i will receive no more messages, he obeys the order in
choice(Vi).

+ Algorithm SM(m) solves the Byzantine General's problem if there are at most
m traitors.

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401. 31

31

Signed messages “

@ General

attack:0 attack:0 attack:0 etreat:0

?2?7?

W Lieutenant 2
ck:0:1

atta attack:0:1

SM(1) with one traitor

Lamport, Shostak, Pease. The Byzantine General's Problem. ACM TOPLAS, 4,3, July 1982, 382-401.

32

32

Fault Tolerance “

« Terminology & Background

» Byzantine Fault Tolerance (Lamport)

« Async. BFT (Liskov)

33

33

Practical Byzantine Fault “

Tolerance:Asynchronous, Byzantine

Asynchronous
Byzantine

34

Practical Byzantine Fault
Tolerance “‘

 Why async BFT? BFT:

* Malicious attacks, software errors

* Need N-version programming?

» Faulty client can write garbage data, but can’t make

system inconsistent (violate operational semantics)

« Why async?

» Faulty network can violate timing assumptions

» But can also prevent liveness

35

Agreement in Faulty Systems - 4 “

« Byzantine Agreement [Lamport, Shostak, Pease,
1982]
« Assumptions:
« Every message that is sent is delivered correctly
» The receiver knows who sent the message
* Message delivery time is bounded

Message ordering

Unordered Ordered

. il - (2]
2 o
H X Bounded 3
£ Synchronous 3
g X Unbounded §
2 g
4 X X X X Bounded =
8 Asynchronous S
a X X Unbounded &

Unicast Multicast Unicast Multicast 2

Message transmission 36

Table is from http://csis.pace.edu/~marchese/CS865/Papers/Turek-
ManyFacesOfConsensus.pdf

In the system Fischer, Lynch, and Paterson studied, messages were unordered,
communication was unbounded, and processors were asyn- chronous.

Distributed systems “.

* FLP impossibility: Async consensus may not terminate

« Sketch of proof: System starts in “bivalent” state (may decide 0 or
1). At some point, the system is one message away from deciding
on 0 or 1. If that message is delayed, another message may move
the system away from deciding.

* Holds even when servers can only crash (not Byzantine)!

» Hence, protocol cannot always be live (but there exist randomized

BFT variants that are probably live)

[See Fischer, M. J., Lynch, N. A., and Paterson, M. S. 1985. Impossibility of distributed
consensus with one faulty process. J. ACM 32, 2 (Apr. 1985), 374-382.]

In the system Fischer, Lynch, and Paterson studied, messages were unordered,
communication was unbounded, and processors were asynchronous.

37

PBFT ideas N

« PBFT, “Practical Byzantine Fault Tolerance”, M.
Castro and B. Liskov, SOSP 1999

+ Replicate service across many nodes
+ Assumption: only a small fraction of nodes are Byzantine

* Rely on a super-majority of votes to decide on correct
computation.

* Makes some weak synchrony (message delay) assumptions
to ensure liveness

* Would violate FLP impossibility otherwise

+ PBFT property: tolerates <=f failures using a RSM
with 3f+1 replicas

PBFT main ideas

"«

Static configuration (same 3f+1 nodes)
To deal with malicious primary

* Use a 3-phase protocol to agree on sequence number

To deal with loss of agreement
* Use a bigger quorum (2f+1 out of 3f+1 nodes)

Need to authenticate communications

39

PBFT Strategy

"«

* Primary runs the protocol in the normal case
* Replicas watch the primary and do a view change

if it fails

40

Replica state

"«

* Areplica id i (between 0 and N-1)
* Replica 0, replica 1, ...

« A view number v#, initially O

* Primary is the replica with id

i=v# modN

* A log of <op, seg#, status> entries

« Status =

or prepared or committed

41

Normal Case

"«

+ Client sends request to primary
« ortoall

42

Normal Case

"«

* Primary sends pre-prepare message to all

» Pre-prepare contains <v#,seq#,0p>
* Records operation in log as pre-prepared

* Keep in mind that primary might be malicious

« Send different seq# for the same op to different replicas

» Use a duplicate seqg# for op

43

Normal Case

"«

* Replicas check the pre-prepare and if it is ok:

* Record operation in log as pre-prepared
+ Send prepare messages to all
« Prepare contains <i,v#,seq#,0p>

« All to all communication

44

Normal Case: “

* Replicas wait for 2f+1 matching prepares
* Record operation in log as prepared
+ Send commit message to all
« Commit contains <i,v#,seqg#,0p>

* What does this stage achieve:

+ All honest nodes that are prepared prepare the same
value

+ Atleast f+1 honest nodes have sent prepare/pre-
prepare

45

Normal Case:

"«

» Replicas wait for 2f+1 matching commits

* Ensures that at least f+1 trustworthy nodes have

committed

» Record operation in log as committed
+ Execute the operation
+ Send result to the client

46

Normal Case

"«

» Client waits for f+1 matching replies

* Ensures at least one node has committed and executed

47

"«

PBFT

=
Q
[V}
a4
=
€
£
(o]
o
v
=
©
o
[
S
o
VN Y
p
(5]
(e}
[V
S
<
[V}
p =
[U R
A
7 /
v
3
o
v)
VZ
- > o~
- j .
[I <
—]
c £ =
= o
o [}
(4

Replica 3

Replica 4

48

View Change “

» Replicas watch the primary
* Request a view change

« Commit point: when 2f+1 replicas have prepared

49

View Change

* Replicas watch the primary
* Request a view change

» send a do-viewchange request to all

"«

* new primary requires 2f+1 requests to accept new role

+ sends new-view with proof that it got the

50

Additional Issues

"«

State transfer

Checkpoints (garbage collection of the log)
Selection of the primary

Timing of view changes

51

Possible improvements

"«

« Lower latency for writes (4 messages)
* Replicas respond at prepare
+ Client waits for 2f+1 matching responses
» Fast reads (one round trip)
+ Client sends to all; they respond immediately
+ Client waits for 2f+1 matching responses

52

Practical limitations of BFTs “

* Expensive
 Protection is achieved only when <= f nodes falil

» Does not prevent many types of attacks:
* Turn a machine into a botnet node
» Steal SSNs from servers

53

