
1

15-441 Computer Networking

Lecture 18 – More TCP & Congestion
Control

Good Ideas So Far…

• Flow control
• Stop & waitp
• Parallel stop & wait
• Sliding window (e.g., advertised windows)

• Loss recovery
• Timeouts
• Acknowledgement-driven recovery (selective repeat or cumulative

acknowledgement)

10-30-2007 Lecture 18: TCP Details 2

• Congestion control
• AIMD fairness and efficiency

• How does TCP actually implement these?

Outline

• THE SPOOKY PARTS of TCP
• If it d s ’t s it ill th Fi l!• If it doesn t scare you now… it will on the Final!

• TCP connection setup/data transfer
• The Candy-exchange Protocol (TCP)

• TCP reliability

10-30-2007 Lecture 18: TCP Details 3

• How to recover your DEAD packets

• TCP congestion avoidance
• Avoiding the death-traps of overloaded routers

Sequence Number Space

• Each byte in byte stream is numbered.
• 32 bit value
• Wraps around
• Initial values selected at start up time

• TCP breaks up the byte stream into packets.
• Packet size is limited to the Maximum Segment Size

• Each packet has a sequence number.
• Indicates where it fits in the byte stream

10-30-2007 Lecture 18: TCP Details 4

packet 8 packet 9 packet 10

13450 14950 16050 17550

2

Establishing Connection:
Three-Way handshake

• Each side notifies other of
starting sequence number it SYN: SeqC

will use for sending
• Why not simply chose 0?

• Must avoid overlap with earlier
incarnation

• Security issues

• Each side acknowledges
th ’ b

ACK: SeqC+1
SYN: SeqS

ACK: SeqS+1

10-30-2007 Lecture 18: TCP Details 5

other’s sequence number
• SYN-ACK: Acknowledge

sequence number + 1
• Can combine second SYN

with first ACK
Client Server

TCP Connection Setup Example

09:23:33.042318 IP 128.2.222.198.3123 > 192.216.219.96.80: S
4019802004:4019802004(0) win 65535 <mss 1260,nop,nop,sackOK>

(DF)

• Client SYN

()

09:23:33.118329 IP 192.216.219.96.80 > 128.2.222.198.3123: S
3428951569:3428951569(0) ack 4019802005 win 5840 <mss

1460,nop,nop,sackOK> (DF)

09:23:33.118405 IP 128.2.222.198.3123 > 192.216.219.96.80: . ack
3428951570 win 65535 (DF)

10-30-2007 Lecture 18: TCP Details 6

• SeqC: Seq. #4019802004, window 65535, max. seg. 1260
• Server SYN-ACK+SYN

• Receive: #4019802005 (= SeqC+1)
• SeqS: Seq. #3428951569, window 5840, max. seg. 1460

• Client SYN-ACK
• Receive: #3428951570 (= SeqS+1)

TCP State Diagram: Connection Setup

CLOSED active OPEN
create TCB

Client

Server

SYNSYN

LISTEN

Snd SYN
create TCB
passive OPEN

delete TCB
CLOSE

delete TCB
CLOSE

snd SYN
SEND

snd SYN ACK
rcv SYN

rcv SYN

10-30-2007 Lecture 18: TCP Details 7

SENTRCVD

ESTABSend FIN
CLOSE

rcv ACK of SYN
Snd ACK
Rcv SYN, ACK

snd ACK

Tearing Down Connection

• Either side can initiate tear
down A B
• Send FIN signal
• “I’m not going to send any more

data”

• Other side can continue
sending data
• Half open connection

M t ti t k l d

FIN, SeqA

ACK, SeqA+1

ACK

Data

10-30-2007 Lecture 18: TCP Details 8

• Must continue to acknowledge

• Acknowledging FIN
• Acknowledge last sequence

number + 1

ACK, SeqB+1

FIN, SeqB

3

TCP Connection Teardown Example

09:54:17.585396 IP 128.2.222.198.4474 > 128.2.210.194.6616: F
1489294581:1489294581(0) ack 1909787689 win 65434 (DF)

09 54 17 585732 IP 128 2 210 194 6616 128 2 222 198 4474 F

• Session
• Echo client on 128.2.222.198, server on 128.2.210.194

• Client FIN

09:54:17.585732 IP 128.2.210.194.6616 > 128.2.222.198.4474: F
1909787689:1909787689(0) ack 1489294582 win 5840 (DF)

09:54:17.585764 IP 128.2.222.198.4474 > 128.2.210.194.6616: . ack
1909787690 win 65434 (DF)

10-30-2007 Lecture 18: TCP Details 9

• SeqC: 1489294581
• Server ACK + FIN

• Ack: 1489294582 (= SeqC+1)
• SeqS: 1909787689

• Client ACK
• Ack: 1909787690 (= SeqS+1)

State Diagram: Connection Tear-down

CLOSE

CLOSING

CLOSE
WAIT

FIN
WAIT-1

ESTAB

snd FIN
CLOSE

send FIN
CLOSE

LAST-ACKFIN WAIT-2

send FIN
CLOSE

send ACK
rcv FIN

snd ACK
rcv FIN

snd ACK
rcv FIN+ACK

ACK

Active Close

Passive Close

10-30-2007 Lecture 18: TCP Details 10

CLOSING

TIME WAIT

rcv ACK of FIN

LAST ACK

CLOSED

FIN WAIT 2

snd ACK
rcv FIN

delete TCB
Timeout=2msl

rcv ACK of FIN

snd ACK

Outline

TCP ti t /d t t f• TCP connection setup/data transfer

• TCP reliability

10-30-2007 Lecture 18: TCP Details 11

• TCP congestion avoidance

Reliability Challenges

• Congestion related losses
• Variable packet delays• Variable packet delays

• What should the timeout be?
• Reordering of packets

• How to tell the difference between a delayed packet
and a lost one?

10-30-2007 Lecture 18: TCP Details 12

4

TCP = Go-Back-N Variant

• Sliding window with cumulative acks
• Receiver can only return a single “ack” sequence number to the

dsender.
• Acknowledges all bytes with a lower sequence number
• Starting point for retransmission
• Duplicate acks sent when out-of-order packet received

• But: sender only retransmits a single packet.
• Reason???

• Only one that it knows is lost

10-30-2007 Lecture 18: TCP Details 13

• Network is congested shouldn’t overload it

• Error control is based on byte sequences, not packets.
• Retransmitted packet can be different from the original lost packet

– Why?

Round-trip Time Estimation

• Wait at least one RTT before retransmitting
• Importance of accurate RTT estimators:Importance of accurate RTT estimators:

• Low RTT estimate
• unneeded retransmissions

• High RTT estimate
• poor throughput

• RTT estimator must adapt to change in RTT
• But not too fast or too slow!

10-30-2007 Lecture 18: TCP Details 14

• But not too fast, or too slow!
• Spurious timeouts

• “Conservation of packets” principle – never more than a
window worth of packets in flight

Original TCP Round-trip Estimator

• Round trip times
exponentially 2

2.5

p y
averaged:
• New RTT = α (old RTT)

+ (1 - α) (new sample)
• Recommended value

for α: 0.8 - 0.9
• 0.875 for most TCP’s

0

0.5

1

1.5

R t it ti t t (b * RTT) h b 2

10-30-2007 Lecture 18: TCP Details 15

• Retransmit timer set to (b * RTT), where b = 2
• Every time timer expires, RTO exponentially backed-off

• Not good at preventing spurious timeouts
• Why?

RTT Sample Ambiguity

A B A B

X

Sample
RTT

RTO

Sample
RTT

RTO
X

10-30-2007 Lecture 18: TCP Details 16

• Karn’s RTT Estimator
• If a segment has been retransmitted:

• Don’t count RTT sample on ACKs for this segment
• Keep backed off time-out for next packet
• Reuse RTT estimate only after one successful transmission

5

Jacobson’s Retransmission Timeout

• Key observation:
At hi h l d d t i i i hi h• At high loads round trip variance is high

• Solution:
• Base RTO on RTT and standard deviation

• RTO = RTT + 4 * rttvar
• new rttvar = β * dev + (1- β) old rttvar

10-30-2007 Lecture 18: TCP Details 17

_ β (β) _
• Dev = linear deviation
• Inappropriately named – actually smoothed linear

deviation

Timestamp Extension

• Used to improve timeout mechanism by more
accurate measurement of RTT

• When sending a packet, insert current time into
option
• 4 bytes for time, 4 bytes for echo a received timestamp

• Receiver echoes timestamp in ACK
• Actually will echo whatever is in timestamp

10-30-2007 Lecture 18: TCP Details 18

• Removes retransmission ambiguity
• Can get RTT sample on any packet

Timer Granularity

• Many TCP implementations set RTO in multiples
of 200 500 1000msof 200,500,1000ms

• Why?
• Avoid spurious timeouts – RTTs can vary quickly due to

cross traffic
• Make timers interrupts efficient

• What happens for the first couple of packets?

10-30-2007 Lecture 18: TCP Details 19

What happens for the first couple of packets?
• Pick a very conservative value (seconds)

Fast Retransmit

• What are duplicate acks (dupacks)?
• Repeated acks for the same sequence

• When can duplicate acks occur?
• Loss
• Packet re-ordering
• Window update – advertisement of new flow control window

• Assume re-ordering is infrequent and not of large
magnitude
• Use receipt of 3 or more duplicate acks as indication of loss

10-30-2007 Lecture 18: TCP Details 20

• Use receipt of 3 or more duplicate acks as indication of loss
• Don’t wait for timeout to retransmit packet

6

Fast Retransmit

Sequence No Duplicate Acks

RetransmissionX

10-30-2007 Lecture 18: TCP Details 21

Time

Packets

Acks

TCP (Reno variant)

XX

Sequence No
X

X

X

Now what? - timeout

10-30-2007 Lecture 18: TCP Details 22

Time

Packets

Acks

SACK

• Basic problem is that cumulative acks provide little
informationinformation

• Selective acknowledgement (SACK) essentially
adds a bitmask of packets received
• Implemented as a TCP option
• Encoded as a set of received byte ranges (max of 4

ranges/often max of 3)

10-30-2007 Lecture 18: TCP Details 23

g)
• When to retransmit?

• Still need to deal with reordering wait for out of order
by 3pkts

SACK

XX

Sequence No
X

X

X

Now what? – send
retransmissions as soon
as detected

10-30-2007 Lecture 18: TCP Details 24

Time

Packets

Acks

7

Performance Issues

• Timeout >> fast rexmit

• Need 3 dupacks/sacks

• Not great for small transfers
• Don’t have 3 packets outstanding

10-30-2007 Lecture 18: TCP Details 25

• What are real loss patterns like?

Outline

TCP ti t /d t t f• TCP connection setup/data transfer

• TCP reliability

10-30-2007 Lecture 18: TCP Details 26

• TCP congestion avoidance

Additive Increase/Decrease

• Both X1 and X2
increase/ decrease

T0

T1

Fairness Line

User 2’s
Allocation

x2

by the same amount
over time
• Additive increase

improves fairness and
additive decrease
reduces fairness

10-30-2007 Lecture 18: TCP Details 27

Efficiency Line

User 1’s Allocation x1

Muliplicative Increase/Decrease

• Both X1 and X2
increase by theincrease by the
same factor over
time
• Extension from

origin – constant
fairness

T0

T1

Fairness Line

User 2’s
Allocation

x2

10-30-2007 Lecture 18: TCP Details 28

Efficiency Line

User 1’s Allocation x1

8

What is the Right Choice?

• Constraints limit
t AIMDus to AIMD

• Improves or
keeps fairness
constant at
each step

• AIMD moves

x0

x1

x2

Fairness Line

User 2’s
Allocation

x2

10-30-2007 Lecture 18: TCP Details 29

towards optimal
point

Efficiency Line

User 1’s Allocation x1

TCP Congestion Control

• Changes to TCP motivated by ARPANET
congestion collapsecongestion collapse

• Basic principles
• AIMD
• Packet conservation
• Reaching steady state quickly

10-30-2007 Lecture 18: TCP Details 30

Reaching steady state quickly
• ACK clocking

AIMD

• Distributed, fair and efficient
• Packet loss is seen as sign of congestion and results in a g g

multiplicative rate decrease
• Factor of 2

• TCP periodically probes for available bandwidth by
increasing its rate

10-30-2007 Lecture 18: TCP Details 31
Time

Rate

Implementation Issue

• Operating system timers are very coarse – how to pace
packets out smoothly?p y

• Implemented using a congestion window that limits how
much data can be in the network.
• TCP also keeps track of how much data is in transit

• Data can only be sent when the amount of outstanding
data is less than the congestion window.
• The amount of outstanding data is increased on a “send” and

10-30-2007 Lecture 18: TCP Details 32

The amount of outstanding data is increased on a send and
decreased on “ack”

• (last sent – last acked) < congestion window

• Window limited by both congestion and buffering
• Sender’s maximum window = Min (advertised window, cwnd)

9

Congestion Avoidance

• If loss occurs when cwnd = W
• Network can handle 0.5W ~ W segmentsNetwork can handle 0.5W W segments
• Set cwnd to 0.5W (multiplicative decrease)

• Upon receiving ACK
• Increase cwnd by (1 packet)/cwnd

• What is 1 packet? 1 MSS worth of bytes
• After cwnd packets have passed by approximately increase

f 1 MSS

10-30-2007 Lecture 18: TCP Details 33

of 1 MSS

• Implements AIMD

Congestion Avoidance Sequence Plot

Sequence No

10-30-2007 Lecture 18: TCP Details 34

Time

Packets

Acks

Congestion Avoidance Behavior

Congestion
Window

10-30-2007 Lecture 18: TCP Details 35

Time
Packet loss
+ retransmit

Grabbing
back

Bandwidth

Cut
Congestion

Window
and Rate

Important Lessons

• TCP state diagram setup/teardown

• TCP timeout calculation how is RTT estimated

• Modern TCP loss recovery
• Why are timeouts bad?

10-30-2007 Lecture 18: TCP Details 36

• How to avoid them? e.g. fast retransmit

