Peer-to-Peer

15-441

Scaling Problem

 Millions of clients = server and network
meltdown

Carnegie Mellon

P2P System

* Leverage the resources of client machines (peers)
— Computation, storage, bandwidth

Carnegie Mellon

Why p2p?

 Harness lots of spare capacity
— 1 Big Fast Server: 1Gbit/s, $10k/month++
— 2,000 cable modems: 1Gbit/s, $??
— 1M end-hosts: Uh, wow.

e Build self-managing systems / Deal with huge
scale
— Same techniques attractive for both companies /
servers / p2p

 E.g., Akamai’'s 14,000 nodes
* Google’s 100,000+ nodes

Carnegie Mellon

Outline

e p2p file sharing techniques
— Downloading: Whole-file vs. chunks

— Searching
» Centralized index (Napster, etc.)
* Flooding (Gnutella, etc.)
« Smarter flooding (KaZaA, ...)
* Routing (Freenet, etc.)

e Uses of p2p - what works well, what doesn’t?
— servers vs. arbitrary nodes
— Hard state (backups!) vs soft-state (caches)

e Challenges
— Fairness, freeloading, security, ...

Carnegie Mellon

P2p file-sharing

e Quickly grown in popularity
— Dozens or hundreds of file sharing applications

— 35 million American adults use P2P networks --
29% of all Internet users in US!

— Audio/Video transfer now dominates traffic on the
Internet

What's out there?

Central |Flood Super- Route

node
flood

Whole Napster |Gnutella Freenet

File

Chunk BitTorrent KaZaA DHTs

Based (bytes, |eDonkey
not 2000

chunks)

Carnegie Mellon

Searching
2
2 2.
N, a N3
Key="“title”
ValueZ!\/IP?v data... Clg;t
Publisher Lookup(“title”)
2
N4 N Nﬁ
2 ° 2

Searching 2

 Needles vs. Haystacks

— Searching for top 40, or an obscure punk
track from 1981 that nobody’s heard of?

e Search expressiveness

— Whole word? Regular expressions? File
names? Attributes? Whole-text search?

* (e.g., p2p gnutella or p2p google?)

Framework

« Common Primitives:
—Join: how to | begin participating?
— Publish: how do | advertise my file?
— Search: how to | find a file?
— Fetch: how to I retrieve a file?

10

Next Topic...

Centralized Database
— Napster

Query Flooding

— Gnutella

Intelligent Query Flooding
— KaZaA

Swarming
— BitTorrent

Unstructured Overlay Routing

— Freenet

Structured Overlay Routing
— Distributed Hash Tables

Carnegie Mellon

11

Napster: History

e 1999: Sean Fanning launches Napster

e Peaked at 1.5 million simultaneous
users

e Jul 2001: Napster shuts down

12

Napster: Overiew

e Centralized Database:

— Join: on startup, client contacts central
server

— Publish: reports list of files to central
server

— Search: query the server => return
someone that stores the requested file

— Fetch: get the file directly from peer

13

Carnegie Mellon

Napster: Publish

25
e e T A
ol e e
25
g

Insert(X,
123.2.21.23)

2
| have X, Y, and Z! &&2
123.2.21.23

14

Carnegie Mellon

Napster: Search

25

e e T A

ol e e
25
g

search(A)

123.2.0.18

Where is file A? &5&

15

Napster: Discussion

* Pros:
— Simple
— Search scope is O(1)

— Controllable (pro or con?)

e Cons:
— Server maintains O(N) State
— Server does all processing
— Single point of failure

16

Next Topic...

Centralized Database
— Napster

Query Flooding

— Gnutella

Intelligent Query Flooding
— KaZaA

Swarming
— BitTorrent

Unstructured Overlay Routing

— Freenet

Structured Overlay Routing
— Distributed Hash Tables

Carnegie Mellon

17

Gnutella: History

* In 2000, J. Frankel and T. Pepper from
Nullsoft released Gnutella

 Soon many other clients: Bearshare,
Morpheus, LimeWire, etc.

e In 2001, many protocol enhancements
Including “ultrapeers”

18

Gnutella: Overview

* Query Flooding:
—Join: on startup, client contacts a few other
nodes; these become its “neighbors”
— Publish: no need

— Search: ask neighbors, who ask their
neighbors, and so on... when/if found, reply
to sender.

e TTL limits propagationd

— Fetch: get the file directly from peer

19

Carnegie Mellon

Gnutella: Search

| have file A.

25
R SRR
W, e e e

| have file A.

P
g
e

Where is file A? &5&

20

Carnegie Mellon

Gnutella: Discussion

e Pros:
— Fully de-centralized
— Search cost distributed

— Processing @ each node permits powerful search
semantics

e Cons:
— Search scope is O(N)
— Search time is O(???)
— Nodes leave often, network unstable
o TTL-limited search works well for haystacks.

— For scalability, does NOT search every node. May
have to re-issue query later

KaZaA: History

In 2001, KaZaA created by Dutch company

Kazaa BV

Single network called FastTrack used by

other clients as we

Eventually protoco
could no longer tal

I Morpheus, giFT, etc.

changed so other clients
K 1o It

Most popular file s

naring network today with

>10 million users (number varies)

22

Carnegie Mellon

KaZaA: Overview

e “Smart” Query Flooding:

— Join: on startup, client contacts a “supernode” ...
may at some point become one itself

— Publish: send list of files to supernode

— Search: send guery to supernode, supernodes
flood query amongst themselves.

— Fetch: get the file directly from peer(s); can fetch
simultaneously from multiple peers

23

KaZaA: Network Design

“Super Nodes”

24

Carnegie Mellon

KaZaA: File Insert

Insert(X,
¢ 123.2.21.23)

]
M
oy,

Publish / e

| have X! B

e

P
oy

123.2.21.23

25

Carnegie Mellon

KaZaA: File Search

-->

123.2.22.50

e -;.Jt“““,t-cr<
Feal s

Queryé,m,::f

Where is file A? B

26

Carnegie Mellon

KaZaA: Fetching

 More than one node may have requested file...

 How to tell?
— Must be able to distinguish identical files
— Not necessarily same filename
— Same filename not necessarily same file...

 Use Hash of file
— KaZaA uses UUHash: fast, but not secure
— Alternatives: MD5, SHA-1

e How to fetch?
— Get bytes [0..1000] from A, [1001...2000] from B
— Alternative: Erasure Codes

27

Carnegie Mellon

KaZaA: Discussion

e Pros:

— Tries to take into account node heterogeneity:
« Bandwidth
* Host Computational Resources
 Host Availability (?)

— Rumored to take into account network locality

e Cons:
— Mechanisms easy to circumvent
— Still no real guarantees on search scope or search time

o Similar behavior to gnutella, but better.

28

Carnegie Mellon

Stabllity and Superpeers

 Why superpeers?
— Query consolidation

 Many connected nodes may have only a few files

» Propagating a query to a sub-node would take more b/w
than answering it yourself

— Caching effect
* Requires network stability

e Superpeer selection Is time-based

— How long you’ve been on is a good predictor of
how long you'll be around.

29

Carnegie Mellon

BitTorrent: History

e |n 2002, B. Cohen debuted BitTorrent

« Key Motivation:
— Popularity exhibits temporal locality (Flash Crowds)
— E.g., Slashdot effect, CNN on 9/11, new movie/game release

 Focused on Efficient Fetching, not Searching:
— Distribute the same file to all peers
— Single publisher, multiple downloaders

 Has some “real” publishers:

— Blizzard Entertainment using it to distribute the beta of their
new game

30

Carnegie Mellon

BitTorrent: Overview

e Swarming:
— Join: contact centralized “tracker” server, get a list
of peers.
— Publish: Run a tracker server.

— Search: Out-of-band. E.g., use Google to find a
tracker for the file you want.

— Fetch: Download chunks of the file from your
peers. Upload chunks you have to them.

* Big differences from Napster:
— Chunk based downloading (sound familiar? :)
— “few large files” focus
— Anti-freeloading mechanisms

31

BitTorrent: Publish/Join
gTracker

SN,

</

2 - - B

BitTorrent: Fetch

33

Carnegie Mellon

BitTorrent: Sharing Strategy

 Employ “Tit-for-tat” sharing strategy
— AIs downloading from some other people
» A will let the fastest N of those download from him

— Be optimistic: occasionally let freeloaders
download
* Otherwise no one would ever start!

 Also allows you to discover better peers to download
from when they reciprocate

— Let N peop
« Goal: Pareto Efficiency

— Game Theory: “No change can make anyone
better off without making others worse off”

— Does it work? (don’t know!)

Carnegie Mellon

BitTorrent: Summary

e Pros:
— Works reasonably well in practice

— Gives peers incentive to share resources; avoids
freeloaders

e Cons:
— Pareto Efficiency relative weak condition
— Central tracker server needed to bootstrap swarm

— (Tracker is a design choice, not a requirement, as
you know from your projects. Could easily
combine with other approaches.)

35

Next Topic...

Centralized Database
— Napster

Query Flooding

— Gnutella

Intelligent Query Flooding
— KaZaA

Swarming
— BitTorrent

Unstructured Overlay Routing
— Freenet

Structured Overlay Routing
— Distributed Hash Tables (DHT)

Carnegie Mellon

36

Carnegie Mellon

Distributed Hash Tables

e Academic answer to p2p

e (Goals
— Guatanteed lookup success
— Provable bounds on search time
— Provable scalability

 Makes some things harder
— Fuzzy queries / full-text search / etc.

 Read-write, not read-only

e Hot Topic in networking since introduction in
~2000/2001

37

DHT: Overview

 Abstraction: a distributed “hash-table” (DHT)
data structure:

— put(id, item);
—item = get(id);
 Implementation: nodes in system form a
distributed data structure

— Can be Ring, Tree, Hypercube, Skip List, Butterfly
Network, ...

38

Carnegie Mellon

DHT: Overview (2)

e Structured Overlay Routing:
— Join: On startup, contact a “bootstrap” node and integrate
yourself into the distributed data structure; get a node id

— Publish: Route publication for file id toward a close node id
along the data structure

— Search: Route a query for file id toward a close node id.
Data structure guarantees that query will meet the
publication.

— Fetch: Two options:

« Publication contains actual file => fetch from where query stops

» Publication says “I have file X” => query tells you 128.2.1.3 has
X, use IP routing to get X from 128.2.1.3

39

Carnegie Mellon

DHT: Example - Chord

e Associate to each node and file a unique id In
an uni-dimensional space (a Ring)
— E.g., pick from the range [0...2™M]
— Usually the hash of the file or IP address

* Properties:

— Routing table size is O(log N) , where N is the total
number of nodes

— Guarantees that a file is found in O(log N) hops

from MIT In 2001

40

Carnegie Mellon

DHT: Consistent Hashing

Key 5\>
Node 105\ KS
N105 ﬁ

No0 &
™\

K80
A key Is stored at its successor: node with next higher ID

41

DHT: Chord Basic Lookup

N120
/ _ﬁ’w “

g\where Is key 807?”

B N32

“N90 has K80”

|

42

Carnegie Mellon

DHT: Chord “Finger Table”

1/4 1/2

1/8

1/16
1/32
1/64
1/128

NSO

« Entry iin the finger table of node n is the first node that succeeds or
equals n + 2

 |n other words, the ith finger points 1/2" way around the ring

43

Carnegie Mellon

DHT: Chord Join

e Assume an identifier space [0..8]

 Node nl joins

Succ. Table

i lid+2'|succ

0
1] 3 | 1
2

44

DHT: Chord Join

 Node n2 joins

Carnegie Mellon

Succ. Table

id+2'

SuccC

0
1
2

Succ. Table

id+2'

Succ

0
1
2

1
1
1

45

DHT: Chord Join

Succ. Table

 Nodes n0, n6 join

id+2'

SuccC

i

0
1
2

1
2
4

1
2
0

Carnegie Mellon

Succ. Table

id+2'

SuccC

i

0
1
2

=
0
2

0
0
2

N

yd
1"\
2

NN

Succ. Table

id+2'

SuccC

i

0
1
2

2
3
5

2
6
6

Succ. Table

id+2'

Succ

i

0
1
2

3
4
6

6
6
6

46

e Nodes:

nl, n2, nO, n6

e |[tems:
f7, f2

DHT: Chord Join

Succ. Table

Carnegie Mellon

ltems
i [id+2'|succ| |7
0] 1 1
1 2 2
2 4 0

Succ. Table

id+2'

SuccC

i

0
1
2

Succ. Table ltems

1

i [id+2'|succ
o 2 2
1| 3 6
2l 5 6

Succ. Table

id+2'

SucCcC

i

0
1
2

3
4
6

6
6
6

47

DHT: Chord Routing

Succ. Table ltems
. i lid+2'|succ| |7
« Upon receiving a query for ol 11 1
item id, a node; 1l 2| 2
« Checks whether stores the 112 41|09
item locally ’-

 If not, forwards the query to
the largest node in its
successor table that does

not exceed id

Succ. Table

id+2'

SuccC

i

0
1
2

7
0
2

Carnegie Mellon

0 \ .
1
2

Succ. Table ltems
id+2'|succ| | 1
2 2
3 6
5 6

Succ. Table

i lid+2'[succ

O] 3 6

1| 4 6

2| 6 6

48

DHT: Chord Summary

* Routing table size?
—Log N fingers
e Routing time?

—Each hop expects to 1/2 the distance to the
desired id => expect O(log N) hops.

49

DHT: Discussion

e Pros:

— Guaranteed Lookup

— O(log N) per node state and search scope
e Cons:

— No one uses them? (only one file sharing

app)
— Supporting non-exact match search is hard

50

When are p2p / DHTs useful?

e Caching and “soft-state” data

— Works well! BitTorrent, KaZaA, etc., all
use peers as caches for hot data

* Finding read-only data
— Limited flooding finds hay
— DHTs find needles

e BUT

51

Carnegie Mellon

A Peer-to-peer Google?

« Complex intersection queries (“the” + “who”)
— Billions of hits for each term alone

e Sophisticated ranking

— Must compare many results before returning a
subset to user

* Very, very hard for a DHT / p2p system
— Need high inter-node bandwidth

— (This Is exactly what Google does - massive
clusters)

52

Carnegie Mellon

Writable, persistent p2p

e Do you trust your data to 100,000 monkeys?

 Node availability hurts
— EX: Store 5 copies of data on different nodes

— When someone goes away, you must replicate the
data they held

— Hard drives are *huge*, but cable modem upload
bandwidth is tiny - perhaps 10 Gbytes/day

— Takes many days to upload contents of 200GB
hard drive. Very expensive leave/replication
situation!

53

Carnegie Mellon

P2P: Summary

« Many different styles; remember pros and cons of
each

centralized, flooding, swarming, unstructured and structured
routing

e Lessons learned:

Single points of failure are very bad

Flooding messages to everyone is bad

Underlying network topology is important

Not all nodes are equal

Need incentives to discourage freeloading

Privacy and security are important

Structure can provide theoretical bounds and guarantees

54

Extra Slides

Carnegie Mellon

KaZaA: Usage Patterns

e KaZaA is more than
one workload!

— Many files < 10MB
(e.g., AUdIO Flles) T — - requests _

— Many files>100MB 2 .., | Zbyes transferred
(e.g., Movies)

% of requests/bytes

<= 10 10-100 =100
object size (MB)

from Gummadi et al., SOSP 2003
56

Carnegie Mellon

KaZaA: Usage Patterns (2)

e KaZaA is not Zipf!

— FileSharing:
“Request-once”

“ 1':"](}':":“]':} B T T —————,
— Web: “Request-
" 1,000,000
repeatedly
100,000 .
.E HWWW objects
@ 10,000
g 1,000
°
* 100
10 f
100MB+ Kazaa objects
g L .))

1 10 100 1000 10000 100000 1E+08 1E+07 1E+08
object rank

from Gummadi et al., SOSP 2003
57

Carnegie Mellon

KaZaA: Usage Patterns (3)

What we saw:
— A few big files consume most of the bandwidth
— Many files are fetched once per client but still very popular

Solution? (005
— Caching!

80%

40%

64.6%

% bytes transferred

EI:II?I'D L e], L N o

all objects large objects small objects

from Gummadi et al., SOSP 2003
58

Freenet: History

e |In 1999, I|. Clarke started the Freenet
project
 Basic ldea:

— Employ Internet-like routing on the overlay
network to publish and locate files

o Addition goals:
— Provide anonymity and security
— Make censorship difficult

59

Carnegie Mellon

Freenet: Overview

e Routed Queries:

— Join: on startup, client contacts a few other
nodes it knows about; gets a unique node id

— Publish: route file contents toward the file id. File
IS stored at node with id closest to file id

— Search: route query for file id toward the closest
node id

— Fetch: when query reaches a node containing
file id, it returns the file to the sender

60

Carnegie Mellon

Freenet. Routing Tables

« id — file identifier (e.g., hash of file)
 next_hop — another node that stores the file id
» file —file identified by id being stored on the local node

id | next_hop| file

* Forwarding of query for file id

— If file id stored locally, then stop

» Forward data back to upstream requestor

— If not, search for the “closest” id in the table, and
forward the message to the corresponding
next_hop

— If data is not found, failure is reported back

* Requestor then tries next closest match in routing
table

61

Carnegie Mellon

Freenet. Routing
nquelry(lo) n

nl n2
4| n1|f4 L ,loln3lfe f~_
12| n2|f12 N
5(n3 4\ g g
\\ n4 n5
N
5 14|n5 |14 5 4|n1|f4
|} 13| n2[f13 |— [10[n5 |10
n3 / 3[n6 8|n6
3[(n1|f3
14| n4|f14
5(n3

62

Carnegie Mellon

Freenet:. Routing Properties

e “Close” file ids tend to be stored on the same
node

— Why? Publications of similar file ids route toward
the same place

e Network tend to be a “small world”

— Small number of nodes have large number of
neighbors (i.e., ~ “six-degrees of separation”)

e Consequence:

— Most queries only traverse a small number of hops
to find the file

63

Carnegie Mellon

Freenet: Anonymity & Security

Anonymity
— Randomly modify source of packet as it traverses the
network

— Can use “mix-nets” or onion-routing

Security & Censorship resistance

— No constraints on how to choose ids for files => easy to have
to files collide, creating “denial of service” (censorship)

— Solution: have a id type that requires a private key signature
that is verified when updating the file

— Cache file on the reverse path of queries/publications =>
attempt to “replace” file with bogus data will just cause the
file to be replicated more!

64

Carnegie Mellon

Freenet: Discussion

* Pros:
— Intelligent routing makes queries relatively short

— Search scope small (only nodes along search path
Involved); no flooding

— Anonymity properties may give you “plausible
deniability”
e Cons:
— Still no provable guarantees!

— Anonymity features make it hard to measure,
debug

65

	Peer-to-Peer
	Scaling Problem
	P2P System
	Why p2p?
	Outline
	P2p file-sharing
	What’s out there?
	Searching
	Searching 2
	Framework
	Next Topic...
	Napster: History
	Napster: Overiew
	Napster: Publish
	Napster: Search
	Napster: Discussion
	Next Topic...
	Gnutella: History
	Gnutella: Overview
	Gnutella: Search
	Gnutella: Discussion
	KaZaA: History
	KaZaA: Overview
	KaZaA: Network Design
	KaZaA: File Insert
	KaZaA: File Search
	KaZaA: Fetching
	KaZaA: Discussion
	Stability and Superpeers
	BitTorrent: History
	BitTorrent: Overview
	BitTorrent: Publish/Join
	BitTorrent: Fetch
	BitTorrent: Sharing Strategy
	BitTorrent: Summary
	Next Topic...
	Distributed Hash Tables
	DHT: Overview
	DHT: Overview (2)
	DHT: Example - Chord
	DHT: Consistent Hashing
	DHT: Chord Basic Lookup
	DHT: Chord “Finger Table”
	DHT: Chord Join
	DHT: Chord Join
	DHT: Chord Join
	DHT: Chord Join
	DHT: Chord Routing
	DHT: Chord Summary
	DHT: Discussion
	When are p2p / DHTs useful?
	A Peer-to-peer Google?
	Writable, persistent p2p
	P2P: Summary
	Extra Slides
	KaZaA: Usage Patterns
	KaZaA: Usage Patterns (2)
	KaZaA: Usage Patterns (3)
	Freenet: History
	Freenet: Overview
	Freenet: Routing Tables
	Freenet: Routing
	Freenet: Routing Properties
	Freenet: Anonymity & Security
	Freenet: Discussion

