
Peer-to-Peer

15-441

2

Scaling Problem
• Millions of clients ⇒ server and network

meltdown

3

P2P System

• Leverage the resources of client machines (peers)
– Computation, storage, bandwidth

4

Why p2p?

• Harness lots of spare capacity
– 1 Big Fast Server: 1Gbit/s, $10k/month++
– 2,000 cable modems: 1Gbit/s, $??
– 1M end-hosts: Uh, wow.

• Build self-managing systems / Deal with huge
scale
– Same techniques attractive for both companies /

servers / p2p
• E.g., Akamai’s 14,000 nodes
• Google’s 100,000+ nodes

5

Outline

• p2p file sharing techniques
– Downloading: Whole-file vs. chunks
– Searching

• Centralized index (Napster, etc.)
• Flooding (Gnutella, etc.)
• Smarter flooding (KaZaA, …)
• Routing (Freenet, etc.)

• Uses of p2p - what works well, what doesn’t?
– servers vs. arbitrary nodes
– Hard state (backups!) vs soft-state (caches)

• Challenges
– Fairness, freeloading, security, …

6

P2p file-sharing

• Quickly grown in popularity
– Dozens or hundreds of file sharing applications
– 35 million American adults use P2P networks --

29% of all Internet users in US!
– Audio/Video transfer now dominates traffic on the

Internet

7

What’s out there?
Central Flood Super-

node
flood

Route

Whole
File

Napster Gnutella Freenet

Chunk
Based

BitTorrent KaZaA
(bytes,
not
chunks)

DHTs
eDonkey
2000

8

Searching

Internet

N1
N2 N3

N6N5
N4

Publisher

Key=“title”
Value=MP3 data… Client

Lookup(“title”)

?

9

Searching 2

• Needles vs. Haystacks
– Searching for top 40, or an obscure punk

track from 1981 that nobody’s heard of?
• Search expressiveness

– Whole word? Regular expressions? File
names? Attributes? Whole-text search?

• (e.g., p2p gnutella or p2p google?)

10

Framework

• Common Primitives:
– Join: how to I begin participating?
– Publish: how do I advertise my file?
– Search: how to I find a file?
– Fetch: how to I retrieve a file?

11

Next Topic...
• Centralized Database

– Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Swarming
– BitTorrent

• Unstructured Overlay Routing
– Freenet

• Structured Overlay Routing
– Distributed Hash Tables

12

Napster: History

• 1999: Sean Fanning launches Napster
• Peaked at 1.5 million simultaneous

users
• Jul 2001: Napster shuts down

13

Napster: Overiew

• Centralized Database:
– Join: on startup, client contacts central

server
– Publish: reports list of files to central

server
– Search: query the server => return

someone that stores the requested file
– Fetch: get the file directly from peer

14

Napster: Publish

I have X, Y, and Z!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

15

Napster: Search

Where is file A?

Query Reply

search(A)
-->
123.2.0.18Fetch

123.2.0.18

16

Napster: Discussion

• Pros:
– Simple
– Search scope is O(1)
– Controllable (pro or con?)

• Cons:
– Server maintains O(N) State
– Server does all processing
– Single point of failure

17

Next Topic...
• Centralized Database

– Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Swarming
– BitTorrent

• Unstructured Overlay Routing
– Freenet

• Structured Overlay Routing
– Distributed Hash Tables

18

Gnutella: History

• In 2000, J. Frankel and T. Pepper from
Nullsoft released Gnutella

• Soon many other clients: Bearshare,
Morpheus, LimeWire, etc.

• In 2001, many protocol enhancements
including “ultrapeers”

19

Gnutella: Overview

• Query Flooding:
– Join: on startup, client contacts a few other

nodes; these become its “neighbors”
– Publish: no need
– Search: ask neighbors, who ask their

neighbors, and so on... when/if found, reply
to sender.

• TTL limits propagation�
– Fetch: get the file directly from peer

20

I have file A.

I have file A.

Gnutella: Search

Where is file A?

Query

Reply

21

Gnutella: Discussion

• Pros:
– Fully de-centralized
– Search cost distributed
– Processing @ each node permits powerful search

semantics
• Cons:

– Search scope is O(N)
– Search time is O(???)
– Nodes leave often, network unstable

• TTL-limited search works well for haystacks.
– For scalability, does NOT search every node. May

have to re-issue query later

22

KaZaA: History

• In 2001, KaZaA created by Dutch company
Kazaa BV

• Single network called FastTrack used by
other clients as well: Morpheus, giFT, etc.

• Eventually protocol changed so other clients
could no longer talk to it

• Most popular file sharing network today with
>10 million users (number varies)

23

KaZaA: Overview
• “Smart” Query Flooding:

– Join: on startup, client contacts a “supernode” ...
may at some point become one itself

– Publish: send list of files to supernode
– Search: send query to supernode, supernodes

flood query amongst themselves.
– Fetch: get the file directly from peer(s); can fetch

simultaneously from multiple peers

24

KaZaA: Network Design
“Super Nodes”

25

KaZaA: File Insert

I have X!

Publish

insert(X,
123.2.21.23)

...

123.2.21.23

26

KaZaA: File Search

Where is file A?

Query

search(A)
-->
123.2.0.18

search(A)
-->
123.2.22.50

Replies

123.2.0.18

123.2.22.50

27

KaZaA: Fetching
• More than one node may have requested file...
• How to tell?

– Must be able to distinguish identical files
– Not necessarily same filename
– Same filename not necessarily same file...

• Use Hash of file
– KaZaA uses UUHash: fast, but not secure
– Alternatives: MD5, SHA-1

• How to fetch?
– Get bytes [0..1000] from A, [1001...2000] from B
– Alternative: Erasure Codes

28

KaZaA: Discussion

• Pros:
– Tries to take into account node heterogeneity:

• Bandwidth
• Host Computational Resources
• Host Availability (?)

– Rumored to take into account network locality

• Cons:
– Mechanisms easy to circumvent
– Still no real guarantees on search scope or search time

• Similar behavior to gnutella, but better.

29

Stability and Superpeers

• Why superpeers?
– Query consolidation

• Many connected nodes may have only a few files
• Propagating a query to a sub-node would take more b/w

than answering it yourself

– Caching effect
• Requires network stability

• Superpeer selection is time-based
– How long you’ve been on is a good predictor of

how long you’ll be around.

30

BitTorrent: History

• In 2002, B. Cohen debuted BitTorrent
• Key Motivation:

– Popularity exhibits temporal locality (Flash Crowds)
– E.g., Slashdot effect, CNN on 9/11, new movie/game release

• Focused on Efficient Fetching, not Searching:
– Distribute the same file to all peers
– Single publisher, multiple downloaders

• Has some “real” publishers:
– Blizzard Entertainment using it to distribute the beta of their

new game

31

BitTorrent: Overview

• Swarming:
– Join: contact centralized “tracker” server, get a list

of peers.
– Publish: Run a tracker server.
– Search: Out-of-band. E.g., use Google to find a

tracker for the file you want.
– Fetch: Download chunks of the file from your

peers. Upload chunks you have to them.
• Big differences from Napster:

– Chunk based downloading (sound familiar? :)
– “few large files” focus
– Anti-freeloading mechanisms

32

BitTorrent: Publish/Join
Tracker

33

BitTorrent: Fetch

34

BitTorrent: Sharing Strategy

• Employ “Tit-for-tat” sharing strategy
– A is downloading from some other people

• A will let the fastest N of those download from him
– Be optimistic: occasionally let freeloaders

download
• Otherwise no one would ever start!
• Also allows you to discover better peers to download

from when they reciprocate
– Let N peop

• Goal: Pareto Efficiency
– Game Theory: “No change can make anyone

better off without making others worse off”
– Does it work? (don’t know!)

35

BitTorrent: Summary

• Pros:
– Works reasonably well in practice
– Gives peers incentive to share resources; avoids

freeloaders
• Cons:

– Pareto Efficiency relative weak condition
– Central tracker server needed to bootstrap swarm
– (Tracker is a design choice, not a requirement, as

you know from your projects. Could easily
combine with other approaches.)

36

Next Topic...
• Centralized Database

– Napster

• Query Flooding
– Gnutella

• Intelligent Query Flooding
– KaZaA

• Swarming
– BitTorrent

• Unstructured Overlay Routing
– Freenet

• Structured Overlay Routing
– Distributed Hash Tables (DHT)

37

Distributed Hash Tables
• Academic answer to p2p
• Goals

– Guatanteed lookup success
– Provable bounds on search time
– Provable scalability

• Makes some things harder
– Fuzzy queries / full-text search / etc.

• Read-write, not read-only
• Hot Topic in networking since introduction in

~2000/2001

38

DHT: Overview
• Abstraction: a distributed “hash-table” (DHT)

data structure:
– put(id, item);
– item = get(id);

• Implementation: nodes in system form a
distributed data structure

– Can be Ring, Tree, Hypercube, Skip List, Butterfly
Network, ...

39

DHT: Overview (2)

• Structured Overlay Routing:
– Join: On startup, contact a “bootstrap” node and integrate

yourself into the distributed data structure; get a node id
– Publish: Route publication for file id toward a close node id

along the data structure
– Search: Route a query for file id toward a close node id.

Data structure guarantees that query will meet the
publication.

– Fetch: Two options:
• Publication contains actual file => fetch from where query stops
• Publication says “I have file X” => query tells you 128.2.1.3 has

X, use IP routing to get X from 128.2.1.3

40

DHT: Example - Chord

• Associate to each node and file a unique id in
an uni-dimensional space (a Ring)

– E.g., pick from the range [0...2m]
– Usually the hash of the file or IP address

• Properties:
– Routing table size is O(log N) , where N is the total

number of nodes
– Guarantees that a file is found in O(log N) hops

from MIT in 2001

41

DHT: Consistent Hashing

N32

N90

N105

K80

K20

K5

Circular ID space

Key 5
Node 105

A key is stored at its successor: node with next higher ID

42

DHT: Chord Basic Lookup

N32

N90

N105

N60

N10
N120

K80

“Where is key 80?”

“N90 has K80”

43

DHT: Chord “Finger Table”

N80

1/21/4

1/8

1/16
1/32
1/64
1/128

• Entry i in the finger table of node n is the first node that succeeds or
equals n + 2i

• In other words, the ith finger points 1/2n-i way around the ring

44

DHT: Chord Join
• Assume an identifier space [0..8]

• Node n1 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 1
1 3 1
2 5 1

Succ. Table

45

DHT: Chord Join

• Node n2 joins
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 1
2 5 1

Succ. Table

i id+2i succ
0 3 1
1 4 1
2 6 1

Succ. Table

46

DHT: Chord Join

• Nodes n0, n6 join
0

1

2

3
4

5

6

7
i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

47

DHT: Chord Join

• Nodes:
n1, n2, n0, n6

• Items:
f7, f2

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

48

DHT: Chord Routing
• Upon receiving a query for

item id, a node:
• Checks whether stores the

item locally
• If not, forwards the query to

the largest node in its
successor table that does
not exceed id

0
1

2

3
4

5

6

7 i id+2i succ
0 2 2
1 3 6
2 5 6

Succ. Table

i id+2i succ
0 3 6
1 4 6
2 6 6

Succ. Table

i id+2i succ
0 1 1
1 2 2
2 4 0

Succ. Table

7

Items
1

Items

i id+2i succ
0 7 0
1 0 0
2 2 2

Succ. Table

query(7)

49

DHT: Chord Summary

• Routing table size?
–Log N fingers

• Routing time?
–Each hop expects to 1/2 the distance to the

desired id => expect O(log N) hops.

50

DHT: Discussion

• Pros:
– Guaranteed Lookup
– O(log N) per node state and search scope

• Cons:
– No one uses them? (only one file sharing

app)
– Supporting non-exact match search is hard

51

When are p2p / DHTs useful?

• Caching and “soft-state” data
– Works well! BitTorrent, KaZaA, etc., all

use peers as caches for hot data
• Finding read-only data

– Limited flooding finds hay
– DHTs find needles

• BUT

52

A Peer-to-peer Google?

• Complex intersection queries (“the” + “who”)
– Billions of hits for each term alone

• Sophisticated ranking
– Must compare many results before returning a

subset to user
• Very, very hard for a DHT / p2p system

– Need high inter-node bandwidth
– (This is exactly what Google does - massive

clusters)

53

Writable, persistent p2p

• Do you trust your data to 100,000 monkeys?
• Node availability hurts

– Ex: Store 5 copies of data on different nodes
– When someone goes away, you must replicate the

data they held
– Hard drives are *huge*, but cable modem upload

bandwidth is tiny - perhaps 10 Gbytes/day
– Takes many days to upload contents of 200GB

hard drive. Very expensive leave/replication
situation!

54

P2P: Summary
• Many different styles; remember pros and cons of

each
– centralized, flooding, swarming, unstructured and structured

routing
• Lessons learned:

– Single points of failure are very bad
– Flooding messages to everyone is bad
– Underlying network topology is important
– Not all nodes are equal
– Need incentives to discourage freeloading
– Privacy and security are important
– Structure can provide theoretical bounds and guarantees

Extra Slides

56

KaZaA: Usage Patterns
• KaZaA is more than

one workload!
– Many files < 10MB

(e.g., Audio Files)
– Many files > 100MB

(e.g., Movies)

from Gummadi et al., SOSP 2003

57

KaZaA: Usage Patterns (2)
• KaZaA is not Zipf!

– FileSharing:
“Request-once”

– Web: “Request-
repeatedly”

from Gummadi et al., SOSP 2003

58

KaZaA: Usage Patterns (3)
• What we saw:

– A few big files consume most of the bandwidth
– Many files are fetched once per client but still very popular

• Solution?
– Caching!

from Gummadi et al., SOSP 2003

59

Freenet: History

• In 1999, I. Clarke started the Freenet
project

• Basic Idea:
– Employ Internet-like routing on the overlay

network to publish and locate files
• Addition goals:

– Provide anonymity and security
– Make censorship difficult

60

Freenet: Overview

• Routed Queries:
– Join: on startup, client contacts a few other

nodes it knows about; gets a unique node id
– Publish: route file contents toward the file id. File

is stored at node with id closest to file id
– Search: route query for file id toward the closest

node id
– Fetch: when query reaches a node containing

file id, it returns the file to the sender

61

Freenet: Routing Tables
• id – file identifier (e.g., hash of file)
• next_hop – another node that stores the file id
• file – file identified by id being stored on the local node

• Forwarding of query for file id
– If file id stored locally, then stop

• Forward data back to upstream requestor
– If not, search for the “closest” id in the table, and

forward the message to the corresponding
next_hop

– If data is not found, failure is reported back
• Requestor then tries next closest match in routing

table

id next_hop file

…
…

62

Freenet: Routing

4 n1 f4
12 n2 f12
5 n3

9 n3 f9

3 n1 f3
14 n4 f14
5 n3

14 n5 f14
13 n2 f13
3 n6

n1 n2

n3

n4

4 n1 f4
10 n5 f10
8 n6

n5

query(10)

1

2

3

4

4’

5

63

Freenet: Routing Properties

• “Close” file ids tend to be stored on the same
node
– Why? Publications of similar file ids route toward

the same place
• Network tend to be a “small world”

– Small number of nodes have large number of
neighbors (i.e., ~ “six-degrees of separation”)

• Consequence:
– Most queries only traverse a small number of hops

to find the file

64

Freenet: Anonymity & Security
• Anonymity

– Randomly modify source of packet as it traverses the
network

– Can use “mix-nets” or onion-routing
• Security & Censorship resistance

– No constraints on how to choose ids for files => easy to have
to files collide, creating “denial of service” (censorship)

– Solution: have a id type that requires a private key signature
that is verified when updating the file

– Cache file on the reverse path of queries/publications =>
attempt to “replace” file with bogus data will just cause the
file to be replicated more!

65

Freenet: Discussion

• Pros:
– Intelligent routing makes queries relatively short
– Search scope small (only nodes along search path

involved); no flooding
– Anonymity properties may give you “plausible

deniability”
• Cons:

– Still no provable guarantees!
– Anonymity features make it hard to measure,

debug

	Peer-to-Peer
	Scaling Problem
	P2P System
	Why p2p?
	Outline
	P2p file-sharing
	What’s out there?
	Searching
	Searching 2
	Framework
	Next Topic...
	Napster: History
	Napster: Overiew
	Napster: Publish
	Napster: Search
	Napster: Discussion
	Next Topic...
	Gnutella: History
	Gnutella: Overview
	Gnutella: Search
	Gnutella: Discussion
	KaZaA: History
	KaZaA: Overview
	KaZaA: Network Design
	KaZaA: File Insert
	KaZaA: File Search
	KaZaA: Fetching
	KaZaA: Discussion
	Stability and Superpeers
	BitTorrent: History
	BitTorrent: Overview
	BitTorrent: Publish/Join
	BitTorrent: Fetch
	BitTorrent: Sharing Strategy
	BitTorrent: Summary
	Next Topic...
	Distributed Hash Tables
	DHT: Overview
	DHT: Overview (2)
	DHT: Example - Chord
	DHT: Consistent Hashing
	DHT: Chord Basic Lookup
	DHT: Chord “Finger Table”
	DHT: Chord Join
	DHT: Chord Join
	DHT: Chord Join
	DHT: Chord Join
	DHT: Chord Routing
	DHT: Chord Summary
	DHT: Discussion
	When are p2p / DHTs useful?
	A Peer-to-peer Google?
	Writable, persistent p2p
	P2P: Summary
	Extra Slides
	KaZaA: Usage Patterns
	KaZaA: Usage Patterns (2)
	KaZaA: Usage Patterns (3)
	Freenet: History
	Freenet: Overview
	Freenet: Routing Tables
	Freenet: Routing
	Freenet: Routing Properties
	Freenet: Anonymity & Security
	Freenet: Discussion

