

Course Format

- ~30 lectures
 - Cover the "principles and practice"Complete readings before lecture
- 4 homework assignments

 "Paper": Do you understand and can you apply the material?

 "Lab": Illustrate networking concepts

 Loosely tied to lecture materials

 Teach networking concepts/tools
- 3 programming projects
 How to use and build networks / networked applications
 Application-layer programming; include key ideas from kernel
 - · Larger, open-ended group projects. Start early!
- Midterm and final
 - Covers each of the above 3 parts of class

Recitation Sections

- · Key 441 objective: system programming
- Different from what you've done before!
 - Low level (C)
 - · Often designed to run indefinitely. Handle all errors!
 - Must be secure
 - Interfaces specified by documented protocols
 - Concurrency involved (inter and intra-machine)
 - · Must have good test methods
- Recitations address this
 - "A system hackers' view of software engineering"
 - Practical techniques designed to save you time & pain!

Sounds Great! How Do I Get In?

- Currently 76 people are enrolled, and 33 people are on the waiting list.
 - If you do not plan to take the course, please drop it ASAP so somebody else can take your place!
- We give preference to:
 - 1. Students attending class (sign in sheet)

Administrative Stuff

- Watch the course web page
 - http://www.cs.cmu.edu/~srini/15-441/S10/
 - Handouts, readings, ..
- Read bboards
 - academic.cs.15-441[.announce] for official announcements
 - cyrus.academic.cs.15-441.discuss for questions/ answers
- Office hours posted on web page
 - · By appointment this week
- Course secretary
 - Angela Miller, Gates 9118

Grading

- · Roughly equal weight in projects and testing
 - 45% for Project I, II and III
 - 15% for Project II
 - 15% for Midterm exam
 - · 25% for Final exam
 - 15% for Homework
- You MUST demonstrate competence in both projects and tests to pass the course
 - · Fail either and you fail the class!

9

Policy on Collaboration

- · Working together is important
- Discuss course material in general terms
- Work together on program debugging, ..
- · Final submission must be your own work
 - · Homeworks, midterm, final
- Projects: Solo (P1) + Teams of two (P2,P3)
 - · Collaboration, group project skills
 - Both students should understand the entire project
- Web page has details
- Things we don't want to have to say: We run projects through several cheat-checkers against all previously and concurrently handed in versions...

10

Late Work and Regrading

- Late work will receive a 15% penalty/day
 - No assignment can be more than 2 days late
 - No penalty for a limited number of handins see web page
 - · Only exception is documented illness and family emergencies
- Requests for regrading must be submitted in writing to course secretary within 2 weeks.
 - Regrading will be done by original grader
 - No assignments with a "short fuse"
 - · Homeworks: ~1-2 weeks
 - · Projects: ~5 weeks
 - · Start on time!
 - Every year some students discover that a 5 week project cannot be completed in a week

This Week

- Intro what's this all about?
- · Protocol stacks and layering
- Recitations start this week: Socket programming (213 review++)
- On to the good stuff...Whirlwind tour of networking
 - Course outline:
 - Low-level (physical, link, circuits, etc.)
 - Internet core concepts (addressing, routing, DNS)
 - · Advanced topics

What is the Objective of Networking?

- Enable communication between applications on different computers
 - · Web (Lecture 22)
 - · Peer to Peer (Lecture 23)
 - · Audio/Video (Lecture 20)
 - · Funky research stuff (Lecture 27)
- Must understand application needs/demands (Lecture 3)
 - · Traffic data rate
 - · Traffic pattern (bursty or constant bit rate)
 - Traffic target (multipoint or single destination, mobile or fixed)
 - · Delay sensitivity
 - · Loss sensitivity

13

What Is a Network?

- · Collection of nodes and links that connect them
- This is vague. Why? Consider different networks:
 - Internet
 - Andrew
 - Telephone
 - Your house
 - Others sensor nets, cell phones, ...
- Class focuses on Internet, but explores important common issues and challenges

14

Networks Juggle Many Goals

- Efficiency resource use; cost
- The "ilities":
 - Evolvability
 - Managability
 - · Security (securability, if you must)
 - · Ease of:
 - Creation
 - Deployment
 - · Creating useful applications
 - Scalability

5

Challenges for Networks

- Geographic scope
 - · The Internet vs. Andrew
- Scale
 - The Internet vs. your home network
- Application types
 - Email vs. video conferencing
- Trust and Administration
 - Corporate network one network "provider"
 - Internet 17,000 network providers

Circuit Switching

- Source first establishes a connection (circuit) to the destination
 - Each switch along the way stores info about connection (and possibly allocates resources)
- Source sends the data over the circuit
 - No need to include the destination address with the data since the switches know the path
- The connection is explicitly torn down
- Example: telephone network (analog)

22

Circuit Switching Discussion

- Circuits have some very attractive properties.
- Fast and simple data transfer, once the circuit has been established
- Predictable performance since the circuit provides isolation from other users
- E.g. guaranteed bandwidth
- · But it also has some shortcomings.
 - · How about bursty traffic
 - · circuit will be idle for significant periods of time
 - · How about users with different bandwidth needs
 - · do they have to use multiple circuits
- Alternative: packet switching.

Packet Switching (our emphasis)

- Source sends information as self-contained packets that have an address.
 - · Source may have to break up single message in multiple
- Each packet travels independently to the destination host.
 - Switches use the address in the packet to determine how to forward the packets
 - · Store and forward
- Analogy: a letter in surface mail.

24

Challenges of the Internet

- · Heterogeneity
 - Address formats
 - Performance bandwidth/latency
 - Packet size
 - · Loss rate/pattern/handling
 - Routing
 - Diverse network technologies → satellite links, cellular links, carrier pigeons

29

Challenges of the Internet

- Scale
 - 100,000,000s of hosts
 - 18,000+ administrative domains,
 - Thousands of applications
- Adversarial environment
- Oh, and let's make it easy to use...
- How to translate between various network technologies?

30

Internet Design

- In order to inter-operate, all participating networks have to follow a common set of rules
- E.g., requirements for packets:
 - Header information: Addresses, etc. (Lecture 9)
 - Data. What is packet size limit? (Lectures 5—9)

4

How To Find Nodes? Internet Computer 1 Computer 2 Need naming and routing Lectures 8-13

Networks Implement Many Functions

- Link
- Multiplexing
- Routing
- Addressing/naming (locating peers)
- Reliability
- Flow control
- Fragmentation
- Etc....

41

Next Lecture

- · How to determine split of functionality
 - Across protocol layers
 - · Across network nodes
- Read two papers on the motivations for the Internet architecture:
 - "The design philosophy of the DARPA Internet Protocols", Dave Clark, SIGCOMM 88
 - "End-to-end arguments in system design", Saltzer, Reed, and Clark, ACM Transactions on Computer Systems, November 1984

12

Meeting Application Demands

- · Sometimes interior of the network can do it
 - · E.g., Quality of Service
 - · Benefits of circuit switching in packet-switched net
 - · Hard in the Internet, easy in restricted contexts
 - · Lecture 21
- OR hosts can do it
 - · E.g., end-to-end Transport protocols
 - TCP performs end-to-end retransmission of lost packets to give the illusion of a reliable underlying network.
 - Lectures 16-19