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1 Introduction

Formal verification of concurrent programs involves:

1. A specification of processes and process interaction

2. A logic to reason about such interactions

Then, program analyses are phrased as (dis)proving theorems in the logic. While the
role of formal logic is clear in the latter part, representing processes and their interactions
as logical phenomena is an area of active research. To that end, Watkins et al. [99] identify
two paradigms with respect to a logical theory T:

formulas-as-processes proofs-as-processes
part 1/process formula φ in T proof of φ
part 1/process interaction search for proof of φ proof reduction
part 2/reasoning meta-logic of T T

While formulas-as-processes typically demands a separate meta-logic to reason about
process interaction, proofs-as-processes implies that formulas are types. Following the
Curry-Howard tradition, a theorem about a process interaction can be written as a type
and proved by writing a process of said type. In this paradigm, dependent types are
desirable for fine-grained reasoning. Contemporary dependent type theories with con-
currency [89, 95] typically focus on the message-passing dynamics reflected by session-
typed processes. In a survey of dependent session types, Toninho et al. [92] identify three
avenues for future work:

1. Processes as proofs—the state-of-the-art [95] permits (linear) session dependency
on functional values as well as (non-linear) functional dependency on processes.
Since one sub-system embeds into the other, is it possible to remove the distinction
between processes and proofs?

2. Encoding nested finite and infinite behaviors classified by mixed inductive-coinductive
types

3. Enabling the implementation of concurrent systems (which use shared state and
non-determinism effects)

In general, a concurrent type theory would also abstract over operational semantics,
e.g., uniformly treat shared memory and message passing dynamics. The goal of this
thesis is to work within this context and develop a unifying solution to the questions of
type dependency and recursion. In this proposal, we aim to:

1. Identify a suitable core language for (asynchronously) communicating processes
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2. Extend it with mixed inductive-coinductive and dependent types

3. Develop the requisite metatheory

This document is structured as follows.

• Section 2 recaps DeYoung et al. [40]’s semi-axiomatic sequent calculus (SAX), a
core language for asynchronous communication with both futures-based [47] and
message-passing dynamics [72] as well as structural and substructural typing dis-
ciplines.1 Moreover, sequential call-by-need and call-by-value strategies are iden-
tified as different schedules. This proposal focuses on the structural variant with
futures-based semantics (goal 1).

• Section 3 reviews the futures-based dynamics of SAX. As a warm-up to dealing with
recursion, we also prove termination of well-typed programs [81] (goal 3).

• Section 4 develops Refined SAX (RSAX), an extension of SAX with type refinements
from an arbitrary logical theory. With arithmetic refinements, RSAX encodes sized
type refinements for mixed inductive-coinductive programming [81] (goal 2). Then,
we extend our termination result to RSAX (goal 3).

• Section 5 proposes Dependent RSAX (DRSAX), an extension of RSAX with depen-
dent types (goal 2). DRSAX simulates process interaction in the refinement theory
by exposing modal necessity from dynamic logic [70], enabling unlimited type de-
pendency on processes (goal 1). As a case study, we show how to reason about
observational equality [5, 11] of processes in the presence of mixed inductive-coinductive
types.

• Section 6 summarizes the pending and future work

In sum, we evidence the following thesis statement:

Thesis: As a unifying principle, type refinements for asynchronously commu-
nicating processes enables mixed inductive-coinductive programming as well
as program reasoning with dependent types.

2 Semi-Axiomatic Sequent Calculus (SAX)

In its full generality, SAX enjoys mixed modes of substructurality as well as both futures-
based and message-passing semantics. Due to the technical issues surrounding sub-
structural dependent types, this thesis is focused on the original, structural type system,

1While linear futures and message passing are weakly bisimilar [72], weakening and contraction are
respectively interpreted as shared memory in the futures model, whereas in message passing, they are
interpreted as service cancellation, replication, and message multicast [71].
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which naturally has a futures-based interpretation. Logically, SAX follows from observa-
tions about type polarity [6, @Levy04]. In the sequent calculus, inference rules are either
invertible—and can be applied at any point in the proof search process, like the right rule
for implication—or noninvertible, which can only be applied when the sequent “contains
enough information,” like the right rules for disjunction. Connectives that have nonin-
vertible right rules are positive and those that have noninvertible left rules are negative.
As a result, we define types stratified by their polarity (without shifts, unlike call-by-
push-value [58]).

Definition 1 (Types). Positive and negative types are defined below.

A+, B+ := ⊕{` : A`}`∈S | 1 | A⊗ B

A−, B− := &{` : A`}`∈S | A→ B

A, B, C := A+ | B−

There are positive (⊗, 1) and negative (&) conjunctions, disjunction (⊕), and implica-
tion (→).

The key innovation of SAX is to make the noninvertible rules axiomatic. Consider the
following right rule for implication as well as the original left rule in the middle that is
replaced with its axiomatic counterpart on the right.

Γ, A ` B
Γ ` A→ B →R

((((((((((((((((Γ, A→ B ` A Γ, B ` C
Γ, A→ B ` C →L Γ, A→ B, A ` B →L

Because the axiomatic rules drop the premises of their sequent calculus counterparts,
cut reduction corresponds to asynchronous communication just as the standard sequent
calculus models synchronous communication [21]. In the futures-based interpretation of
SAX, the sequent becomes the typing judgment2:

Γ︷ ︸︸ ︷
x : A, y : B, . . . ` P(x, y, . . . , z) :: (z : C)

which reads “the process P reads from source addresses x, y, . . . and writes to the des-
tination address z.” P blocks if it reads from x, y, . . . before they are initialized. Dually,
P performs a non-blocking write to z exactly once, representing the initialization of a fu-
ture [47]. Moreover, the types A, B, . . . , C restrict the shape of the contents of the memory
addressed by x, y, . . . , z. We will now examine the rules for each connective and justify
their computational interpretation via cut reduction. First, let us review the syntax for
addresses and processes.

2The labeled succedent z : C is typical of sequent calculi [20] and allows presentational symmetry. For
example, the continuations typed by ⊗L and→R are identical.
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Definition 2 (Address). Addresses s, t := x | a are either address variables x, y, z, . . . or
address values a, b, c, . . .. The latter are only relevant at runtime (discussed in the next
section).

Definition 3 (Address variable binding conventions). SAX evinces a trichotomy of values
V, processes P, and continuations K subject to the following conventions for binding
address variables.

• A value V may contain address variables, the set of which is denoted vars(V), but
may not bind them

• A process P may bind an address variable x with the syntax x. P(x) where P(x)
indicates that x may occur in P (cf. abstract binding trees [cite:@Harper2016PFPL]).
The substitution of an address t for x in P is written P(t).

• A continuation K of the form V 7→ P(vars(V)), where V only contains address vari-
ables, binds vars(V)

Definition 4 (Process). The abstract syntax for processes is given by the following gram-
mar, taken up-to renaming of address variables.

P, Q := s→ t copy contents of s to t
| (x. P(x))‖(y. Q(y)) for fresh a, spawn P(a) to write to a and concurrently

proceed as Q(a), which may read from a
| t ◦V pass V to continuation stored in t, or

write value V to t
| t match K pass value stored in t to continuation K, or

write continuation K to t

The first two kinds of processes correspond to the identity and cut rules; the concrete
syntax for the latter is x ← P(x); Q(x) to indicate that the bound address variables in P
and Q are instantiated with the same address value at runtime. The remaining constructs
correspond to logical right and left rules (shown in the table below to the left). Each such
rule distinguishes an address variable x as well as a value V or continuation K, specified
on a per-type basis (shown in the table below to the right).

polarity right rule left rule
positive x ◦V x match K
negative x match K x ◦V

type(s) value V continuation K
1 〈〉 〈〉 7→ P
⊗,→ 〈s, t〉 〈y, z〉 7→ P(y, z)
&,⊕ ` · t {` · y 7→ P`(y)}`∈S

Let us begin with the identity and cut rules. We will show cut reductions via the
relation .
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Identity and Cut. The cut rule drives our futures-based model. The process x ← P(x); Q(x)
at once spawns a process P(x) which populates x as well as a process Q(x) which may
perform a blocking read from x. Based on the following initial cut reductions, the identity
rule x → y copies the contents of x to y.

Γ, x : A ` x → y :: (y : A)
id

Γ ` P(x) :: (x : A) Γ, x : A ` Q(x) :: (z : C)
Γ ` x ← P(x); Q(x) :: (z : C)

cut

y← (x → y) ; Q(y) Q(x)

x ← P(x); (x → y) P(y)

Disjunction and Negative Conjunction. Disjunction ⊕{` : A`}`∈S corresponds to the
(eager) variant record type, so its right rule writes a tagged address y of type Ak for some
k ∈ S whereas its left rule matches on the choice of k then proceeds with the continua-
tion process Pk(y). Viewing such a pattern matching continuation as a record, negative
conjunction corresponds to the lazy record type with the roles of its rules reversed.

k ∈ S
Γ, y : Ak ` x ◦ k · y :: (x : ⊕{` : A`}`∈S)

⊕R
{Γ, x : ⊕{` : A`}`∈S, y : Ak ` Pk(y) :: (z : C)}k∈S

Γ, x : ⊕{` : A`}`∈S ` x match {` · y 7→ P`(y)}`∈S :: (z : C)
⊕L

{Γ ` P(y) :: (y : A`)}`∈S

Γ ` x match {` · y 7→ P`(y)}`∈S :: (x : &{` : A`}`∈S)
&R k ∈ S

Γ, x : &{` : A`}`∈S ` x ◦ k · y :: (y : Ak)
&L

x ← x ◦ k · y; x match {` · y 7→ Q`(y)}`∈S  Qk(y)

x ← x match {` · y 7→ P`(y)}`∈S; x ◦ k · y Pk(y)

Positive Conjunction and Implication. Positive conjunction corresponds to the eager
product type, so its right rule writes a pair of sources 〈s, t〉 to some destination x. Dually,
its left rule reads the pair 〈y, z〉 from x and passes it to the continuation’s process Q(y, z).
The rules for 1 degenerate accordingly.

Γ, y : A, z : B ` x ◦ 〈y, z〉 :: (x : A⊗ B)
⊗R

Γ, x : A⊗ B, y : A, z : B ` P(y, z) :: (w : C)
Γ, x : A⊗ B ` x match (〈y, z〉 7→ P(y, z)) :: (w : C)

⊗L
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Γ ` x ◦ 〈〉 :: (x : 1) 1R
Γ, x : 1 ` P :: (z : C)

Γ, x : 1 ` x match (〈〉 7→ P) :: (z : C) 1L

x ← x ◦ 〈y, z〉; x match (〈y, z〉 7→ Q(y, z)) Q(y, z)

x ← x ◦ 〈〉; x match (〈〉 7→ Q) Q

Dual to positive conjunction, implication types destination-passing style functions. Its
right rule writes the continuation 〈y, z〉 7→ P(y, z) which may read from the source/argument
y and must write the result of function application to the destination z. Thus, the left rule
performs this style of application by passing it a suitable source/argument and destina-
tion.

Γ, y : A ` P(y, z) :: (z : B)
Γ ` x match (〈y, z〉 7→ P(y, z)) :: (x : A→ B) →R Γ, x : A→ B, y : A ` x ◦ 〈y, z〉 :: (z : B) →L

x ← x match (〈y, z〉 7→ P(y, z)); x ◦ 〈y, z〉 P(y, z)

Destination-passing style is essential to futures-based parallelism—one must be able
to refer to the result of function application even if it has not yet been initialized.

Before discussing the metatheory for simply-typed SAX, please see appendix B of [40]
for example programs—we reproduce one below.

Example 1 (SAX Program). Let us write a program with the signature x : A→ B, y : B→
C ` P :: (z : A→ C); P is defined as follows.

P , z match (〈u, w〉 7→ u′ ← x ◦ 〈u, u′〉; y ◦ 〈u′, w〉)
The first function call, to x, produces the intermediate result u′ of type B. The subse-

quent call, to y, yields the final result w of type C.

2.1 Related Work

As a polarized language capable of expressing call-by-need and call-by-value evaluation
strategies, SAX is comparable extended call-by-push-value [62], which has an additional
construct for call-by-need.
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3 Futures-Based Semantics

Parallel dynamics of SAX processes is assigned to configurations of processes and their
mechanism of communication (future cells or messages) [40, 72, 71]. In this section, we
will review the futures-based semantics of configurations and, in anticipation of intro-
ducing recursion, prove that well-typed configurations terminate.

Definition 5 (Configuration). A configuration C is defined by the following grammar.

C := · empty configuration
| proc a P process P writing to cell addressed by a
| !cell a W future (persistent, marked with !) cell addressed by a with contents W := V | K
| C, C concatenation of two configurations

C denotes a multiset of objects (processes and cells), so (·) and (, ) form a commutative
monoid. We also require that a runtime address refers to at most one object in C. Lastly, a
configuration F is final iff it only contains future cells.

Now, let Σ and ∆ be runtime contexts that associate runtime addresses to types (as
opposed to address variables). By convention, substitution of address variables for run-
time addresses must be well-typed, i.e., [a : A, . . . , b : B/x : A, . . . , y : B]P is well-defined.
Then, the configuration typing judgment given in figure 1, Σ ` C :: ∆, means that the
objects in C are well-typed with sources in Σ and destinations in ∆.3

Γ ` P :: (z : C)
Σ ` proc a ([Σ, c : C/Γ, z : C]P) :: (Σ, c : C)

proc

Γ ` z ◦V :: (z : C)
Σ ` !cell c ([Σ, c : C/Γ, z : C]V) :: (Σ, c : C)

!cellV
Γ ` z match K :: (z : C)

Σ ` !cell a ([Σ, c : C/Γ, z : C]K) :: (Σ, c : C)
!cellK

Σ ` · :: Σ
empty Σ ` C :: Σ′ Σ′ ` C ′ :: ∆

Σ ` C, C ′ :: ∆
join

Figure 1: Configuration Typing

Configuration reduction→ is given as multiset rewriting rules [22] in figure 2, which
replace any subset of a configuration matching the left-hand side with the right-hand
side. Formally, a configuration of objects can be represented by a multiplicative conjunc-
tion of linear logic propositions representing each object. Then, rewrite rules are linear

3The typing rules preserve the invariant Σ ⊆ ∆ because future cells are persistent.
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implications and fresh runtime addresses are generated by existential quantification over
a sort of names [68]. Principal cuts encountered in a configuration are resolved by passing
a value to a continuation also given in figure 2 as the relation V . K = P (relatedly, see
K-machines in [48]).

!cell a W, proc b (a→ b)→ !cell b W
proc c (x ← P(x); Q(x))→

proc a (P(a)), proc c (Q(a)) where a is fresh
!cell a K, proc c (a ◦V)→ proc c (V . K)

!cell a V, proc c (a match K)→ proc c (V . K)
proc a (a ◦V)→ !cell a V

proc a (a match K)→ !cell a K

〈〉 . 〈〉 7→ P = P
〈a, b〉 . (〈x, y〉 7→ P(x, y)) = P(a, b)
k · a . {` · x 7→ P`(x)}`∈S = Pk(a)

Figure 2: Operational Semantics

The first rule for → corresponds to the identity rule and copies the contents of one
cell into another. The second rule, which is for cut, models computing with futures [47]:
it allocates a new cell to be populated by the newly spawned P. Concurrently, Q may
read from said new cell, which blocks if it is not yet initialized. The third and fourth rules
resolve principal cuts by passing a value to a continuation. Lastly, the final two rules
perform the action of writing to a cell.

3.1 Termination

Now, we are ready to prove termination of configuration reduction. In contrast to the
original version of this proof [40], we explicitly model types as sets of terminating con-
figurations [85, 69, 82]. In the further proposed work, we aim to reason about semantic
(co)inductive types using this model. This sub-section is outlined as follows:

• We define semantic types: sets of terminating configurations with the ancillary
properties to complete the termination proof.

• We show that semantic versions of the syntactic typing rules of processes, configu-
ration objects, and configurations are admissible in this model.

• We prove the fundamental theorem that every well-typed configuration is in the
model. Normalization (the existence of a normal form, i.e., final configuration reduct)
for closed configurations (where · ` C :: ∆) is a corollary.

• Termination of open configurations (where Σ ` C :: ∆) is a corollary of the funda-
mental theorem and the diamond property [7].
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Now, let us begin with the definition of semantic type.

Definition 6 (Semantic type). A semantic type A , B, . . . is a set of pairs of addresses and
final configurations, writing F ∈ [a : A ] for (a,F ) ∈ A , such that if F ∈ [a : A ], then:

1. Inversion: !cell a W ∈ F for some W.

2. Contraction: F , !cell b W ∈ [b : A ] for fresh b (W is from point 1).

3. Weakening: F ,F ′ ∈ [a : A ] for all F ′.

Let→∗ be multi-step reduction and C ∈ Ja : A K :⇔ C →∗ F and F ∈ [a : A ].

Conditions 1 and 2 are required to reproduce the identity rule semantically, whereas
condition 3 aggregates the semantic type ascriptions of different sub-configurations. In
the next definition, we define each semantic type in boldface based on its syntactic coun-
terpart.

Definition 7 (Semantic types).

• F ∈ [a : 1] , F = F ′, !cell a 〈〉.

• F ∈ [c : A ⊗⊗⊗⊗⊗⊗⊗⊗⊗B] , F = F ′, !cell c 〈a, b〉 where F ′ ∈ [a : A ] and F ′ ∈ [b : B].

• F ∈ [c : A →→→→→→→→→ B] , !cell c K ∈ F for some K and F ,F ′, proc b (c ◦ 〈a, b〉) ∈ Jb : BK
for all F ′ such that F ,F ′ ∈ [a : A ] where a and b are fresh.

• F ∈ [b :⊕⊕⊕⊕⊕⊕⊕⊕⊕{` : A`}`∈S] , F = F ′, !cell b (k · a) and F ′ ∈ [a : Ak] for some k ∈ S.

• F ∈ [b : &&&&&&&&&{` : A`}`∈S] , !cell b K ∈ F for some K and F , proc a (b ◦ k · a) ∈ Ja : AkK
for all k ∈ S and where a is fresh.

Positive semantic types are defined by structure—the contents of a particular cell—
whereas negative semantic types are defined by behavior—how interacting with a con-
figuration produces the desired result (see also the semantics of CBPV [58]). Analogously
for the λ-calculus, the semantic positive product is defined as containing pairs of nor-
malizing terms, whereas the semantic function space contains all terms that normalize
under application [45, 4]. For example, let us verify that ⊗⊗⊗⊗⊗⊗⊗⊗⊗ is a well-defined semantic
type constructor.

Remark. Recall F ∈ [c : A ⊗⊗⊗⊗⊗⊗⊗⊗⊗B] , F = F ′, !cell c 〈a, b〉 where F ′ ∈ [a : A ] and F ′ ∈ [b :
B]. We need to show that conditions 1 through 3 hold.

1. Inversion: Immediate, W , 〈a, b〉.

2. Contraction: For fresh d, we want to show F , !cell d 〈a, b〉 ∈ [d : A ⊗⊗⊗⊗⊗⊗⊗⊗⊗B]. Because
F ′ ∈ [a : A ] and F ′ ∈ [b : B], we have F ∈ [a : A ] and F ∈ [b : B] by condition 3
of A and B, as desired.
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3. Weakening: For all F ′′; F ,F ′′ = F ′,F ′′, !cell c 〈a, b〉 and F ′,F ′′ ∈ [a : A ] as well as
F ′,F ′′ ∈ [b : B] due to condition 3 of both A and B.

Now, to state the semantic typing rule lemmas, we need to define the semantic typing
judgment.

Definition 8 (Semantic typing judgment). Let ΣΣΣΣΣΣΣΣΣ and ∆∆∆∆∆∆∆∆∆ be contexts associating cell ad-
dresses to semantic types.

• F ∈ [ΣΣΣΣΣΣΣΣΣ] , F ∈ [a : A ] for all a : A ∈ ΣΣΣΣΣΣΣΣΣ.

• C ∈ JΣΣΣΣΣΣΣΣΣK , C 7→∗ F and F ∈ [ΣΣΣΣΣΣΣΣΣ].

• ΣΣΣΣΣΣΣΣΣ � C :: ∆∆∆∆∆∆∆∆∆ , for all F ∈ [ΣΣΣΣΣΣΣΣΣ], we have F , C ∈ J∆∆∆∆∆∆∆∆∆K.

In natural deduction, the analogous judgment ΣΣΣΣΣΣΣΣΣ � e : A is defined by quantifying
over all closing value substitutions σ with domain ΣΣΣΣΣΣΣΣΣ, then stating σ(e) ∈ A . Similarly, we
ask whether the configuration C terminates at the desired semantic type(s) when “closed”
by a final configuration F providing all the sources from which C reads. Immediately, we
reproduce the standard backwards closure result.

Lemma 1 (Backward closure). If C →∗ C ′ and ΣΣΣΣΣΣΣΣΣ � C ′ :: ∆∆∆∆∆∆∆∆∆, then ΣΣΣΣΣΣΣΣΣ � C :: ∆∆∆∆∆∆∆∆∆.

We are finally ready to prove a representative sample of semantic typing rule lemmas,
all of which are in figure 3 (the dashed lines indicate that they are lemmas). Afterwards,
we can tackle objects and configurations. As promised, conditions 1 and 2 are used for
the admissibility of the identity rule.

Lemma 2 (id). ΣΣΣΣΣΣΣΣΣ, a : A � proc b (a→ b) :: (ΣΣΣΣΣΣΣΣΣ, a : A , b : A )

Proof. Assuming F ∈ [ΣΣΣΣΣΣΣΣΣ, a : A ], we want to show F , proc b (a → b) ∈ JΣΣΣΣΣΣΣΣΣ, a : A , b : A K.
By condition 1, !cell a W ∈ F . By condition 2, F , !cell b W ∈ [b : A ]. By condition 3,
F , !cell b W ∈ [ΣΣΣΣΣΣΣΣΣ, a : A , b : A ]. Since F , proc b (a → b) → F , !cell b W, we are done by
lemma 1.

The reader may have noticed that each semantic type’s definition encodes its own
noninvertible rule lemma, making the admissibility of rules like⊗⊗⊗⊗⊗⊗⊗⊗⊗R immediate. Invert-
ible rule lemmas require more effort; consider⊗⊗⊗⊗⊗⊗⊗⊗⊗L below.

Lemma 3 (⊗⊗⊗⊗⊗⊗⊗⊗⊗L). If ΣΣΣΣΣΣΣΣΣ, c : A ⊗⊗⊗⊗⊗⊗⊗⊗⊗B, a : A , b : B ` proc d (P(a, b)) :: ∆∆∆∆∆∆∆∆∆, d : C , then ΣΣΣΣΣΣΣΣΣ, c :
A ⊗B ` proc d (c match (〈x, y〉 7→ P(x, y))) :: ∆∆∆∆∆∆∆∆∆, d : C .

Proof. Assuming F ∈ [ΣΣΣΣΣΣΣΣΣ, c : A ⊗B], we want to show that F , proc d (c match (〈x, y〉 7→
P(x, y))) ∈ J∆∆∆∆∆∆∆∆∆, d : C K. Since F ∈ [c : A ⊗B], we have F = F ′, !cell c 〈a, b〉 where F ′ ∈
[a : A ] and F ′ ∈ [b : B]. As a result, both F ∈ [a : A ] and F ∈ [b : B] by condition 3. In
sum, F ∈ [ΣΣΣΣΣΣΣΣΣ, c : A ⊗B, a : A , b : B], so by the premise, F , proc d (P(a, b)) ∈ J∆∆∆∆∆∆∆∆∆, d : C K.
Since F , proc d (c match (〈x, y〉 7→ P(x, y)))→ F , proc d (P(a, b)), we are done by lemma
1.
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Ironically, the persistence of a cell from the conclusion to the premise of a rule, which
encodes contraction, is justified via condition 3 (semantic weakening). On the other hand,
the identity rule, which “bakes in” weakening, is justified via condition 2 (semantic con-
traction). Now, to develop the fundamental theorem, we need a semantic interpretation
of syntactic types.

Definition 9 (Semantic interpretation I). We define the semantic interpretation of LAM by
induction on A.

L1M , 1 LA⊗ BM , LAM⊗⊗⊗⊗⊗⊗⊗⊗⊗ LBM LA→ BM , LAM→→→→→→→→→ LBM

L⊕{` : A`}`∈SM ,⊕⊕⊕⊕⊕⊕⊕⊕⊕{` : LA`M}`∈S L&{` : A`}`∈SM ,&&&&&&&&&{` : LA`M}`∈S

L·M is then extended to runtime contexts Σ and ∆ in the obvious way.

Lemma 4 (Semantic object typing I).

1. If Γ ` z ◦V :: (z : C), then LΣM � !cell a ([Σ, c : C/Γ, z : C]V) :: LΣM, c : LCM.

2. If Γ ` z match K :: (z : C), then LΣM � !cell a ([Σ, c : C/Γ, z : C]K) :: LΣM, c : LCM.

3. If Γ ` P :: (z : C), then LΣM � proc a ([Σ, c : C/Γ, z : C]P) :: LΣM, c : LCM.

Proof. Part 1 follows by case analysis on the process typing derivation D applying the
relevant semantic typing rule lemmas, like⊗⊗⊗⊗⊗⊗⊗⊗⊗R for ⊗Rω. We prove parts 2 and 3 simul-
taneously by lexicographic induction on D then the part number. That is, part 2 refers
to part 3 on the typing subderivation for the process contained in K (like→Rω). In part
3, if P reads a cell (like→Lω or ⊗Lω), then we invoke the relevant semantic typing rule
lemma. If P writes a continuation K, then proc a (a match K) → !cell a K, so we invoke
part 2 on D and conclude by lemma 1. Writing a value follows symmetrically, invoking
part 1.

Now that processes and objects have been resolved, it remains to derive the semantic
configuration typing rule lemmas.

Lemma 5 (Semantic configuration typing).

Empty ΣΣΣΣΣΣΣΣΣ � · :: ΣΣΣΣΣΣΣΣΣ

Join If ΣΣΣΣΣΣΣΣΣ � C :: ΣΣΣΣΣΣΣΣΣ′ and ΣΣΣΣΣΣΣΣΣ′ � C ′ :: ∆∆∆∆∆∆∆∆∆, then ΣΣΣΣΣΣΣΣΣ � C, C ′ :: ∆∆∆∆∆∆∆∆∆.

The previous lemmas establish the fundamental theorem, of which normalization of
closed configurations is a corollary.

Theorem 1 (Fundamental theorem). If Σ ` C :: ∆, then LΣM � C :: L∆M.
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Proof. By induction on the configuration typing derivation D, the empty and join cases
are discharged by lemma 5. The object typing cases are covered by lemma 4.

Termination follows from normalization and the diamond property [7]. Below, let
C1 ∼ C2 iff C1 is equal to C2 up-to renaming of addresses.

Theorem 2 (Diamond property [40]). Assume Σ ` C :: ∆, C → C1, and C → C2 where
C1 6∼ C2. Then, C1 → C ′1 and C2 → C ′2 such that C ′1 ∼ C ′2.

Theorem 3 (Termination). If Σ ` C :: ∆, then there are no infinite reduction sequences
beginning with C.

4 Refined SAX (RSAX)

Now that we have covered simply-typed SAX, we introduce type refinements. Following
Das et al. [32, 31, 33], we internalize assertion and assumption of constraints φ, ψ, . . .,
formulas of some refinement theory, via the following types: constraint conjunction and
implication, respectively.

A+, B+ := . . . | φ ∧ A

A−, B− := . . . | φ ⊃ A

Given a constraint assertion judgment Γ ` φ, these types introduce values [t] and
continuations [y] 7→ P(y) subject to the following typing and operational rules.

Γ ` φ

Γ, y : A ` x ◦ [y] :: (x : φ ∧ A)
∧R

Γ, x : φ ∧ A, φ, y : A ` P(y) :: (w : C)
Γ, x : φ ∧ A ` x match ([y] 7→ P(y)) :: (w : C) ∧L

Γ, φ ` P(y) :: (y : A)

Γ ` x match ([y] 7→ P(y)) :: (x : φ ⊃ A)
⊃R

Γ ` φ

Γ, x : φ ⊃ A ` x ◦ [y] :: (y : A)
⊃L

[a] . ([x] 7→ P(x)) = P(a)

It is also useful to add the process P := . . . | impossible that indicates a dead code
branch due to inconsistent constraints. As a result, it does not appear at run-time.

Γ ` ⊥
Γ ` impossible :: (x : A)

While dependent type theories typically collapse the distinction between types and
constraints via the Curry-Howard correspondence, we rely on an open-world assumption:
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we may instantiate the refinement theory with elements that depart from SAX. Arithmetic
and many-sorted first-order logic enable sized type refinements in RSAX and refinement
reflection in DRSAX, respectively.

To get off the ground, we will begin with arithmetic refinements, adding such con-
traints as comparison of arithmetic terms e1 < e2, etc. Permitting Γ to have arithmetic
variables i, j, k, . . ., arithmetic quantifier types introduce values 〈e, t〉 and continuations
〈i, y〉 7→ P(y) subject to the following rules where the judgment Γ ` e determines that e is
well-defined under the constraints in Γ.

Γ ` e
Γ, y : A(e) ` x ◦ 〈e, y〉 :: (x : ∃i. A(i)) ∃R

Γ, x : ∃i. A(i), i, y : A(i) ` P(i, y) :: (z : C)
Γ, x : ∃i. A(i) ` x match (〈i, y〉 7→ P(i, y)) :: (z : C) ∃L

Γ, i ` P(i, y) :: (y : A(i))
Γ ` x match (〈i, y〉 7→ P(i, y)) :: (x : ∀i. A(i)) ∀R Γ ` e

Γ, x : ∀i. A(i) ` x ◦ 〈e, y〉 :: (y : A(e)) ∀L

〈n, a〉 . (〈i, x〉 7→ P(i, x)) = P(n, a)

Unsurprisingly, they act like constraint conjunction and implication. In the next sub-
section, we will detail our incorporation of mixed inductive-coinductive programming
via arithmetic refinements. For other use cases, refer to [32].

4.1 Sized Type Refinements

Adding (co)inductive types and terminating recursion (including productive corecursive
definitions) to any programming language is a non-trivial task, since only certain recur-
sive programs constitute valid applications of (co)induction principles. Briefly, inductive
calls must occur on data smaller than the input and, dually, coinductive calls must be
guarded by further codata output. In either case, we are concerned with the decrease of
(co)data size—height of data and observable depth of codata—in a sequence of recursive
calls. Since inferring this exactly is intractable, languages like Agda (before version 2.4)
[4] and Coq [88] resort to conservative syntactic criteria like the guardedness check.

One solution that avoids syntactic checks is to track the flow of (co)data size at the
type level with sized types, as pioneered by Hughes et al. [50] and further developed
by others [10, 13, 2, 4]. Inductive and coinductive types are indexed by the height and
observable depth of their data and codata, respectively. Consider the equirecursive type
definitions in example 2 adorned with sized type refinements: nat[i] describes unary nat-
ural numbers less than or equal to i and streamA[i] describes infinite A-streams that allow
the first i + 1 elements to be observed before reaching potentially undefined or divergent
behavior.
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Example 2 (Recursive types).

nat[i] = ⊕{zero : 1, succ : i > 0∧ nat[i− 1]}
streamA[i] = &{head : A, tail : i > 0 ⊃ streamA[i− 1]}

Note that streamA[i] is not polymorphic, but is parametric in the choice of A for
demonstrative purposes.

The succ branch of nat[i] produces a nat at height i − 1 when i > 0 whereas the tail
branch of streamA[i] can produce the remainder of the stream at depth i − 1 assuming
i > 0. Starting from nat[i], recurring on, for example, nat[i− 1] (i > 0 is assumed during
elimination so that i− 1 is well-defined) produces the size sequence i > i− 1 > i− 2 > . . .
that eventually terminates at 0, agreeing with the (strong) induction principle for natural
numbers. Dually, starting from streamA[i], recurring into streamA[i − 1] (again, i > 0 is
assumed during introduction so that i− 1 is well-defined) produces the same well-founded
sequence of sizes, agreeing with the coinduction principle for streams. In either case,
a recursive program terminates if its call graph generates a well-founded sequence of
sizes in each code path. Most importantly, the behavior of constraint conjunction and
implication during elimination resp. introduction encodes induction resp. coinduction.

Let us make this precise—fix signatures of mutually recursive type and process defi-
nitions of the form X[i] = AX(i) and y ← f i x = Pf (y, i, x). As a result, we add to the
type and process syntax:

A, B, C := . . . | X[e]
P, Q := . . . | y← f e x

Types are equirecursive and are unfolded silently; Das et al. [32] consider a richer judg-
mental equality on types that respects equality of type indices (arithmetic terms) which
we leave for the next section on dependent RSAX. We also add an explicit operational
rule unfolding recursive definitions:

proc a (a← f n b)→ proc a (Pf (n, b, a))

To perform termination checking, we modify the process typing judgment to keep
track a vector of arithmetic data e. In general, vectors of objects will be denoted with an
overline.

Γ `e P :: (x : A)

The existing typing rules factor e through. Similar to Levy’s [58] infinitely deep call-
by-push-value, we take a mixed inductive-coinductive view of the syntax to model re-
cursion. To check recursive calls, we add the “call” rule below where ∞J indicates a
coinductive occurrence of the judgment J.
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Γ ` e′ < e y← f i x = Pf (i, x, y) ∞(x : A `e′ Pf (e′, x, y) :: (y : A))

Γ, x : A `e y← f e′ x :: (y : A)
call

Informally, all valid typing derivations are trees whose infinite branches have an in-
stances of the call rule occur infinitely often, representing the unfolding of a recursive
process. At each unfolding, we check that the arithmetic arguments have decreased from
e to e′ lexicographically4 for termination. Formally, if F(X, Y) is a set operator represent-
ing the inference rules for the judgment J with its coinductive and inductive occurrences
as X and Y, respectively, then J is generated by νX. µY. F(X, Y)—a greatest fixed point
surrounding a least fixed point [27].

As a result, sized type refinements are compositional: since termination checking is re-
duced to typechecking, we avoid the brittleness of syntactic termination checking. For
typechecking in finite time, we conjecture that restricting our type system to circular
derivations, which can be represented as finite trees with loops, and decidable arithmetic
(e.g., Presburger) is sufficient. In short, such a restricted system can be put in correspon-
dence with a finitary system that detects said loops [17, 26, 72] and arithmetic assertions
can be discharged mechanically [30]. In the next example, we show a simple inductive
process definition as well as a hypothetical instance of typechecking. Note: in all exam-
ples, we suppress explicit process terms for constrained types, because assumptions
and assertions can be inferred in these circumstances. [33].

Example 3 (Typechecking). The process definition below, whose type signature is i, x :
nat[i] `i y ← eat i x :: (y : 1), traverses a unary natural number by induction to produce
a unit. Recall nat[i] = ⊕{zero : 1, succ : i > 0∧ nat[i− 1]}.

y← eat i x = x match {zero z 7→ z→ y, succ z 7→ y← eat (i− 1) z}
Now, let us construct a typing derivation of its body below. Note that we use “D ∈ J”

to indicate a derivation D of the judgment J.

D =

z : 1 `i (y : 1)
id

i, i > 0 ` i− 1 < i[(i− 1)/i][z/x]D ∈ ∞(i, z : nat[i− 1] `i−1 (y : 1))
i, i > 0, z : nat[i− 1] `i (y : 1)

call

i, z : i > 0∧ nat[i− 1] `i (y : 1)
∧L, cut

i; x : nat[i] `i (y : 1)
⊕L

For space, we omit the process terms. Of importance is the instance of the call rule for
the recursive call to eat: the check i > 0 ` i− 1 < i (discharged automatically) verifies that
the process terminates and the loop [(i− 1)/i][z/x]D “ties the knot” on the typechecking
process. Mutually recursive programs, then, are checked by circular typing derivations
that are mutually recursive in the metatheory.

4If two vectors have different lengths, then zeroes are appended to the shorter one.
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Some prior work, which is based on sequential functional languages, encode recursion
via various fixed point combinators [2, 75] that make both mixed inductive-coinductive
programming [11] and the option of substructural typing difficult, the latter requiring the
use of the ! modality [98]5. Thus, like Fcop

ω [4], we consider a signature of parametric
recursive definitions. Unlike op. cit. and like Levy’s infinitely-deep syntax [58], we make
typing derivations for recursive programs infinitely deep by unfolding recursive calls ad
infinitum [17, 57]. This accrues the following benefits:

• An elegant presentation of typing that need not deal directly with the complexity of
checking mutually recursive definitions

• As we will see in the next subsection, a two-stage termination argument that trans-
lates these infinitely deep derivations to infinitely wide but finitely deep derivations
eligible for induction. As a result, the original typing judgment can utilize arbitrar-
ily rich recursion schemes as long as they can be translated.

• Recalling our goal of future-proofing, the option of introducing substructurality in
correspondence with infinite proofs in linear logic [37, 38, 8]

With our feet now wet, let us explore an example of mutual coinduction.

Example 4 (Evens and odds). The signature below describes definitions that project the
even- and odd-indexed substreams (referred to by y) of some input stream (referred to by
x) at half of the original depth.

i; ·; x : streamA[2i] `i y← evens i x :: (y : streamA[i])

i; ·; x : streamA[2i + 1] `i y← odds i x :: (y : streamA[i])

The even-indexed substream retains the head of the input, but its tail is the odd-
indexed substream of the input’s tail. The odd-indexed substream, on the other hand,
is simply the even-indexed substream of the input’s tail. Operationally, the heads and
tails of both substreams are computed on demand similar to a lazy record. Unlike their se-
quential counterparts, however, the recursive calls proceed concurrently due to the nature
of cut. Since our examples will keep constraints implicit, we indicate when constraints
are assumed or asserted inline for clarity.

y← evens i x = y match { head h 7→ xR. head h,

tail yt︸ ︷︷ ︸
i>0 assumed

7→ xt ← xR. tail xt︸ ︷︷ ︸
2i>0 asserted

; yt ← odds (i− 1) xt︸ ︷︷ ︸
i;i>0`i−1<i checked

}

5The Y combinator, for example, has the type !(!A( A)( A, excluding linear logic without exponen-
tials.
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y← odds i x = xt ← xR. tail xt︸ ︷︷ ︸
2i+1>0 asserted

; y← evens i xt

By inlining the definition of odds in evens and vice versa, both programs terminate
even though odds calls evens with argument i. We sketch an alternate termination argu-
ment for similar such definitions at the end of the next subsection that does not require
inlining. An alternate typing scheme that hides the exact size change is shown below—
given a stream of arbitrary depth, we may project its even- and odd-indexed substreams
of arbitrary depth, too.

i; ·; x : ∀j. streamA[j] `i y← evens i x :: (y : streamA[i])

i; ·; x : ∀j. streamA[j] `i y← odds i x :: (y : streamA[i])

∃j. X[j] and ∀j. X[j] denote full inductive and coinductive types, respectively, classify-
ing (co)data of arbitrary size. In general, less specific type signatures are necessary when
the exact size change is difficult to express at the type level [102]. For example, in relation
to an input list of height i, the height j of the output list from a list filtering function may
be constrained as j ≤ i.

First, we define head and tail observations on streams of arbitrary depth. Since they
are not recursive, we do not bother tracking the size superscript of the typing judgment,
since they can be inlined. Moreover, we take the liberty to nest values (highlighted yel-
low), which can be expanded into SAX [72].

·; ·; x : ∀j. streamA[j] ` y← head x :: (y : A)

y← head x = xR. 〈0, head y〉
·; ·; x : ∀j. streamA[j] ` y← tail x :: (y : ∀j. streamA[j])

y← tail x = y match (〈j, y′〉 7→ xR. 〈j + 1, tail y′〉︸ ︷︷ ︸
j+1>0 asserted

)

The implementation of odds and evens follows almost exactly as before with the above
observations in place. Note that we use the abbreviation y ← f e x; Q , y ← (y ←
f e x); Q for convenience.

y← evens i x = y match {head h 7→ y← head x,
tail yt 7→ xt ← tail x; yt ← odds (i− 1) xt}

y← odds i x = xt ← tail x; y← evens i xt
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Ad hoc features for implementing size arithmetic in the prior work are subsumed by
our more general arithmetic refinements that combine the “good parts” of modern sized
type systems.

• First, the instances of constraint conjunction and implication to encode inductive
resp. coinductive types in our system are similar to the bounded quantifiers in Mini-
Agda [3], which gave an elegant foundation for mixed inductive-coinductive func-
tional programming, avoiding continuity checking [2].

• Unlike the prior work, however, we are able to modulate the specificity of type
signatures: (slight variations of) those in example 4 are respectively given in CIĈ̀
[75] and MiniAgda [3, 1]. Furthermore, we avoid transfinite indices in favor of
permitting some unbounded quantification (following Vezzosi [97]), achieving the
effect of somewhat complicated infinite sizes without leaving finite arithmetic.

Of course, a major application of sized types is mixed inductive-coinductive program-
ming, so consider the following examples that demonstrate use cases in concurrency.

Example 5 (Stream processors). The mixed inductive-coinductive type spA,B[i, j] of stream
processors of input depth i and output depth j represents continuous (in the sense of [43])
functions from streamA[i] to streamB[j]; we define it below. Ghani et al. [43] define it as
the nested greatest-then-least fixed point νX. µY. (A × Y) + (B × X), but we adapt the
version by Abel [3] to finite size arithmetic.

spA,B[i, j] = ⊕{get : A→ spµ
A,B[i, j], put : &{now : B, rest : spν

A,B[i, j]}}
spµ

A,B[i, j] = i > 0∧ ∀j′. spA,B[i− 1, j′]

spν
A,B[i, j] = j > 0 ⊃ spA,B[i, j− 1]

Such functions may consume finitely many elements of type A from the input stream
(the inductive part spµ

A,B[i]) before outputting arbitrarily many elements of type B onto
the output stream (the coinductive part spν

A,B[j]). This requires a lexicographic induction
on (i, j)—in the inductive part, the input depth decreases to i − 1, so the new output
depth j′ may be arbitrary. In the coinductive part, i stays the same, so j must decrease (to
j− 1). Let us interpret stream processors as functions on streams via a concurrent “run”
function (as opposed to the sequential version from prior work [3, 4]). Below, we give the
type signature and code.
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i, j, p : spA,B[i, j], x : streamA[i] ` y← run (i, j) (p, x) :: (y : streamB[j])

y← run (i, j) (p, x) =

p match {get f 7→ h← x ◦ head h; p′ ← f ◦ 〈h, 〈j, p′〉〉︸ ︷︷ ︸
i>0 assumed

;

t← x ◦ tail t︸ ︷︷ ︸
i>0 asserted

; y← run(i− 1, j) (p′, t)︸ ︷︷ ︸
i,j,i>0`(i−1,j)<(i,j) checked

,

put o 7→ y match {head h 7→ o ◦ now h,

tail t︸︷︷︸
j>0 assumed

7→ p′ ← o ◦ rest p′︸ ︷︷ ︸
j>0 asserted

; t← run (i, j− 1) (p′, x)︸ ︷︷ ︸
i,j,j>0`(i,j−1)<(i,j) checked

}}

If the processor issues a “get,” then the head of the input stream is consumed, recurs-
ing on its tail. Otherwise, the output stream is constructed recursively, first issuing the
element received from the processor. It is clear that the program terminates by lexico-
graphic induction on (i, j).

Example 6 (Left-fair streams). Let us define the mixed inductive-coinductive type lfairA,B[i, j]
of left-fair streams [11]: infinite A-streams where each element is separated by finitely
many elements in B. Once again, these types are not polymorphic, but are parametric in
the choice of A and B for demonstration.

lfairA,B[i, j] = ⊕{now : &{head : A, tail : lfairν
A,B[i, j]}, later : B⊗ lfairµ

A,B[i, j]}
lfairν

A,B[i, j] = i > 0 ⊃ ∃j′. lfairA,B[i− 1, j′]

lfairµ
A,B[i, j] = j > 0∧ lfairA,B[i, j− 1]

In particular, i bounds the observation depth of the A-stream whereas j bounds the
height of the B-list in between consecutive A elements. Thus, this type is defined by lex-
icographic induction on (i, j). First, the provider may offer an element of A, in which
case the observation depth of the stream decreases from i to i− 1 (in the coinductive part,
lfairν

A,B[i, j]). As a result, j may be “reset” as an arbitrary j′. On the other hand, if an el-
ement of “padding” in B is offered, then the depth i does not change. Rather, the height
of the B-list decreases from j to j− 1 (in the inductive part, lfairµ

A,B[i, j]). By using left-fair
streams, we can model processes that permit some timeout behavior but are eventually
productive, since consecutive elements of type A are interspersed with only finitely many
timeout acknowledgements of type B. Armed with this type, we can define a projection
operation [11] that removes all of a left-fair stream’s timeout acknowledgements concur-
rently, returning an A-stream. For brevity, we nest patterns (highlighted yellow), which
can be expanded into nested matches [72].
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i, j, x : lfairA,B[i, j] `(i,j) y← proj (i, j) x :: (y : streamA[i])
y← proj (i, j) x =

x match (now s 7→ matchyW(head h 7→ sR. head h,

tail t︸︷︷︸
i>0 assumed

7→ u← sR. tail u;

u match (〈j′, x′〉︸ ︷︷ ︸
i>0 asserted

7→t← proj (i− 1, j′) x′︸ ︷︷ ︸
i,j,j′;i>0`(i−1,j′)<(i,j) checked

)),

later〈b, x′〉︸ ︷︷ ︸
j>0 assumed

7→ y← proj (i, j− 1) x′︸ ︷︷ ︸
i,j;j>0`(i,j−1)<(i,j) checked

)

4.2 Termination

To prove termination of RSAX with respect to the futures-based dynamics reviewed in the
previous section, we first survey the three proof-theoretic representations of recursion:

• Infinitely deep as well as circular proofs, which we have utilized, but typically re-
quire automata-based [42, 38], rewriting-based [8], or “semantic”/Henkin completeness-
based cut elimination strategies [19] in contrast to logical relation arguments.

• (Co)induction rule schemata corresponding to fixed-point combinators, which we
avoided for reasons mentioned at the beginning of the section. Moreover, they are
actually less expressive than circular proofs in general [12].

• Infinitely wide but finitely deep proofs—for example, Schütte [79] proved cut elim-
ination for Peano arithmetic by translation to a system that eliminates the induction
rule and replaces the noninvertible quantifier rules with ω-rules that have a premise
per each natural number (in lieu of introducing eigenvariables). The correspond-
ing concept in the theory of programming languages—infinitely wide programs—
was brought to the λ-calculus by Tait [86], Howard [49], and further developed by
Martin-Löf [61].

The last point is crucial: if we can translate our infinite typing derivations to a system
of infinitely wide but finitely deep proofs with analogous ω-rules, then we can retain
our original inductive termination argument. Thus, we give a purely inductive process
typing called ω process typing with the judgment Γ `ω P :: (x : A) (rules in figure 4).
Constraining Γ to be free of arithmetic variables or constraint hypotheses, the rules ∃Lω

and ∀Rω have one premise per natural number n instead of introducing a new arithmetic
variable. Moreover, the premises of ∧Lω and ⊃Rω assume the closed constraint φ holds
at the meta level instead of adding it to the context.
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Most importantly, the call rule is not coinductive because, in the absence of free arith-
metic variables, the arithmetic arguments decrease from some n to n′ to etc. Since our
chosen lexicographic order on natural number vectors is well-founded, this sequence nec-
essarily terminates. To rephrase: the exact number of recursive calls is known. While this
system is impractical for type checking, we can translate any derivation of the original
process typing judgment to one of ω typing using the theorem below. Technically, we
are restricting our attention to constructive instances of the ω-rules where each premise
is proved uniformly using a computable procedure [103].

Theorem 4 (Translation). Let Γ be free of arithmetic variables or constraint hypotheses. If
D ∈ Γ `n P :: (x : A), then Γ `ω P :: (x : A).

Proof. By lexicographic induction on (n, D), we cover the important cases. We show the
proof as a transformation on derivations with IH as the induction hypothesis.

• When D ends in the identity or an axiomatic rule, we are done by the corresponding
ω rule.

D = Γ, x : A `n x → y :: (y : A)
id
 Γ, x : A `ω x → y :: (y : A)

idω

• When D ends in an invertible propositional rule with subderivation D′, we proceed
by induction on (n, D′).

D =

D′ ∈ Γ, y : A ` P(y, z) :: (z : B)
Γ ` x match (〈y, z〉 7→ P(y, z)) :: (x : A→ B) →R

 

IH(n, D′) ∈ Γ, y : A `ω P(y, z) :: (z : B)
Γ `ω x match (〈y, z〉 7→ P(y, z)) :: (x : A→ B) →Rω

• When D ends in ∃L or ∀R, its subderivation D′ introduces a fresh arithmetic vari-
able i. The mth premise of the corresponding ω rules ∃Lω and ∀Rω are fulfilled by
induction on (n, [m/i]D′).

D =

D′ ∈ Γ, i `n P(i, y) :: (y : A(i))
Γ `n x match (〈i, y〉 7→ P(i, y)) :: (x : ∀i. A(i))

∀R
 

IH(n, [m/i]D′) ∈ Γ `ω P(m, y) :: (y : A(m)) for all m ∈N

Γ `ω x match (〈i, y〉 7→ P(i, y)) :: (x : ∀i. A(i)) ∀Rω

• Analogously, when D ends in ∧L or ⊃R, its subderivation D′ assumes y÷ φ. The
premises of the corresponding ω rules ∧Lω and⊃Rω assume E ∈ · ` φ, so we finish
by induction on (n, E · D′) where E · D′ cuts φ out of D′.
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D =

D′ ∈ Γ, φ `n P(y) :: (y : A)

Γ `n x match ([y] 7→ P(y)) :: (x : φ ⊃ A)
⊃R
 

IH(n, E · D′) ∈ Γ `ω P(y) :: (y : A) if E ∈ · ` φ

Γ `ω x match ([y] 7→ P(y) :: (x : φ ⊃ A)
⊃Rω

• Finally, assume D ends in the call rule with subderivation D′. Although D′ may be
larger than D, we have some new arithmetic arguments n′ < n. Thus, we are done
by induction on (n′, D′) then the ω call rule.

D =

· ` n′ < n D′ ∈ ∞(x : A `n′
∞ Pf (n′, x, y) :: (y : A))

Γ, x : A `n y← f n′ x :: (y : A)
call
 

IH(n′, D′) ∈ x : A `ω Pf (n, x, y) :: (y : A)

Γ, x : A `ω y← f n x :: (y : A)
callω

As a bonus, we can make the original process typing judgment arbitrarily rich to sup-
port more complex patterns of recursion. As long as derivations in that system can be
translated to the ω system, the logical relations argument over ω typing that we detail
shortly does not change. For example, consider the following additions.

• Multiple blocks: To support multiple blocks of definitions, we may simply impose
the requirement that mutual recursion may not occur across blocks. In other words,
the call graph across blocks is directed acyclic, imposing a well-founded order on
definition names: g < f iff f calls g. As a result, translation of the definition f may
proceed by lexicographic induction on ( f , n, D). For example, let f call g. If g is
defined in a different block than f , then the arithmetic arguments it applies (n) may
increase. Otherwise, n must decrease, since g is “equal” to f (in this order).

• Mutual recursion with priorities: Definitions in a block can be ordered by priority:
if g < f , then f can call g with arguments of the same size. In example 4, odds
calls evens with arguments of the same size but evens calls odds with arguments of
lesser size. As a result, evens < odds. If < is well-founded (like in this example),
then translation of f may proceed by lexicographic induction on (n, f , D).

We are finally equipped with the tools to extend our previous termination argument.
First, we re-define configuration typing in terms of ω process typing in figure 5.

Then, we need to define the semantic versions of our new type formers.

Definition 10 (Semantic types II). Assume F is a N-indexed semantic type and that φ is
closed.

• F ∈ [b : ∃∃∃∃∃∃∃∃∃F ] , F = F ′, !cell b 〈n, a〉 and F ′ ∈ [a : F (n)].
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Γ `ω P :: (z : C)
Σ ` proc a ([Σ, c : C/Γ, z : C]P) :: (Σ, c : C)

proc

Γ `ω z ◦V :: (z : C)
Σ ` !cell c ([Σ, c : C/Γ, z : C]V) :: (Σ, c : C)

!cellV
Γ `ω z match K :: (z : C)

Σ ` !cell a ([Σ, c : C/Γ, z : C]K) :: (Σ, c : C)
!cellK

Σ ` · :: Σ
empty Σ ` C :: Σ′ Σ′ ` C ′ :: ∆

Σ ` C, C ′ :: ∆
join

Figure 5: ω Configuration Typing

• F ∈ [b : ∀∀∀∀∀∀∀∀∀F ] , F , proc a (bR.〈n, a〉) ∈ Ja : F (n)K for all n ∈N where a is fresh.

• F ∈ [b : φ∧∧∧∧∧∧∧∧∧A ] ,where F = F ′, !cell b [a], · ` φ, and F ′ ∈ [a : A ].

• F ∈ [b : φ⊃⊃⊃⊃⊃⊃⊃⊃⊃ A ] , if · ` φ, then F , proc a (bR.[a]) ∈ Ja : A K where a is fresh.

In figure 6 are the corresponding semantic object typing rule lemmas.

ΣΣΣΣΣΣΣΣΣ, a : F (n) � !cell b 〈n, a〉 :: ΣΣΣΣΣΣΣΣΣ, a : F (n), b : ∃∃∃∃∃∃∃∃∃F ∃∃∃∃∃∃∃∃∃R
{ΣΣΣΣΣΣΣΣΣ, b : ∃∃∃∃∃∃∃∃∃F , a : F (n) � proc c (P(n, a)) :: ∆∆∆∆∆∆∆∆∆, c : C }n∈N

ΣΣΣΣΣΣΣΣΣ, b : ∃∃∃∃∃∃∃∃∃F � proc c (b match (〈i, x〉 7→ P(i, x))) :: ∆∆∆∆∆∆∆∆∆, c : C
∃∃∃∃∃∃∃∃∃L

{ΣΣΣΣΣΣΣΣΣ � proc a (P(n, a)) :: ∆∆∆∆∆∆∆∆∆, a : F (n)}n∈N

ΣΣΣΣΣΣΣΣΣ � !cell b (〈i, x〉 7→ P(i, x)) :: ∆∆∆∆∆∆∆∆∆, b : ∀∀∀∀∀∀∀∀∀F ∀∀∀∀∀∀∀∀∀R ΣΣΣΣΣΣΣΣΣ, b : ∀∀∀∀∀∀∀∀∀F � proc a (b ◦ 〈n, a〉) :: ΣΣΣΣΣΣΣΣΣ, b : ∀∀∀∀∀∀∀∀∀F , a : F (n) ∀∀∀∀∀∀∀∀∀L

· ` φ

ΣΣΣΣΣΣΣΣΣ, a : A � !cell b [a] :: ΣΣΣΣΣΣΣΣΣ, a : A, b : φ∧∧∧∧∧∧∧∧∧A
∧∧∧∧∧∧∧∧∧R

ΣΣΣΣΣΣΣΣΣ, b : φ∧∧∧∧∧∧∧∧∧A , a : A � proc c (P(a)) :: ∆∆∆∆∆∆∆∆∆, c : C if · ` φ

ΣΣΣΣΣΣΣΣΣ, b : φ∧∧∧∧∧∧∧∧∧A � proc c (b match ([y] 7→ P(y))) :: ∆∆∆∆∆∆∆∆∆, c : C
∧∧∧∧∧∧∧∧∧L

ΣΣΣΣΣΣΣΣΣ � proc a (P(a)) :: ∆∆∆∆∆∆∆∆∆, a : A if · ` φ

ΣΣΣΣΣΣΣΣΣ � !cell b ([y] 7→ P(y)) :: ∆∆∆∆∆∆∆∆∆, b : φ⊃⊃⊃⊃⊃⊃⊃⊃⊃ A
⊃⊃⊃⊃⊃⊃⊃⊃⊃R

· ` φ

ΣΣΣΣΣΣΣΣΣ, b : φ⊃⊃⊃⊃⊃⊃⊃⊃⊃ A � proc a (b ◦ [a]) :: ΣΣΣΣΣΣΣΣΣ, b : φ⊃⊃⊃⊃⊃⊃⊃⊃⊃ A , a : A
⊃⊃⊃⊃⊃⊃⊃⊃⊃L

(no rule for impossible)

y← f i x = Pf (i, x, y) b : A � proc a (Pf (n, b, a)) :: ∆∆∆∆∆∆∆∆∆, a : A

ΣΣΣΣΣΣΣΣΣ, b : A � proc a (a← f n b) :: ∆∆∆∆∆∆∆∆∆, a : A
call

Figure 6: Semantic Object Typing Rule Lemmas II

To redevelop the fundamental theorem, we need to redefine the semantic interpreta-
tion of types to take into account the new type formers as well as recursive types.

Definition 11 (Semantic interpretation II). We define LAMn by lexicographic induction on
(n, A) that types free of arithmetic variables to semantic ones. At a recursive type, n
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is stepped down to allow A to potentially grow larger. Note that λ marks a meta-level
anonymous function and that φ is closed.

L1Mn , 1 LA⊗ BMn , LAMn⊗⊗⊗⊗⊗⊗⊗⊗⊗ LBMn LA→ BMn , LAMn→→→→→→→→→ LBMn

L⊕{` : A`}`∈SMn ,⊕⊕⊕⊕⊕⊕⊕⊕⊕{` : LA`Mn}`∈S L&{` : A`}`∈SMn ,&&&&&&&&&{` : LA`Mn}`∈S

LX[m]M0 , ∅ L∀i. A(i)Mn , ∀∀∀∀∀∀∀∀∀(λm. LA(m)Mn) L∃i. A(i)Mn , ∃∃∃∃∃∃∃∃∃(λm. LA(m)Mn)

LX[m]Mn+1 , LAX[m]Mn Lφ ∧ AMn , φ∧∧∧∧∧∧∧∧∧ LAMn Lφ ⊃ AMn , φ⊃⊃⊃⊃⊃⊃⊃⊃⊃ LAMn

The index n is merely a technical device for defining the semantic interpretation—it
is not a step index. Now, let F ∈ LAM , F ∈ LAMn for some n. L·M is then extended to
contexts Γ and ∆ in the obvious way.

As before, the semantic interpretation induces a map from syntactic typing derivations
to semantic ones which is developed exactly as before.

Lemma 6 (Semantic object typing II).

1. If Γ `ω z ◦V :: (z : C), then LΣM � !cell a ([Σ, c : C/Γ, z : C]V) :: LΣM, c : LCM.

2. If Γ `ω z match K :: (z : C), then LΣM � !cell a ([Σ, c : C/Γ, z : C]K) :: LΣM, c : LCM.

3. If Γ `ω P :: (z : C), then LΣM � proc a ([Σ, c : C/Γ, z : C]P) :: LΣM, c : LCM.

The rest of the termination argument follows as-is, except that the diamond property
must also consider the unfolding of recursive definitions.

4.3 Related Work

RSAX is closely related to the sequential functional language of Lepigre et al. [57], which
utilizes circular typing derivations for a sized type system with mixed inductive-coinductive
types, also avoiding continuity checking. In particular, their well-foundedness criterion
on circular proofs seems to correspond to our checking that sizes decrease between re-
cursive calls. However, they encode recursion using a fixed point combinator and use
transfinite size arithmetic, both of which we avoid as we explained earlier. Moreover, our
metatheory, which handles infinite typing derivations (via mixed induction-coinduction
at the meta level), seems to be both simpler and more general since it does not have to
explicitly rule out non-circular derivations. Nevertheless, we are interested in how their
innovations in polymorphism and Curry-style subtyping can be integrated into RSAX,
especially the ability to handle programs not annotated with sizes.
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Sized types. Sized types are a type-oriented formulation of size-change termination [53]
for rewrite systems [90, 15]. Sized (co)inductive types [10, 13, 2, 4] gave way to sized
mixed inductive-coinductive types [3, 4]. In parallel, linear size arithmetic for sized in-
ductive types [24, 101, 14] was generalized to support coinductive types as well [75].
We present, to our knowledge, the first sized type system for a concurrent programming
language as well as the first system to combine both features from above. As we men-
tioned earlier, we use unbounded quantification [97] in lieu of transfinite sizes to repre-
sent (co)data of arbitrary height and depth. However, the state of the art [3, 4, 23] supports
polymorphic and higher-kinded types, which is part of the future (not proposed) work.

Size inference. RSAX keeps constraints implicit but arithmetic data explicit at the pro-
cess level in agreement with observations made about constraint resp. full reconstruction
in a session-typed calculus [33]. On the other hand, systems like CIĈ̀ [75] and CIC∗̂ [23]
have comprehensive size inference, which translates recursive programs with non-sized
(co)inductive types to their sized counterparts when they are well-defined. Since our
view is that sized types are a mode of use of more general arithmetic refinements, we do
not consider size inference.

Infinite and circular proofs. Validity conditions of infinite proofs have been developed
to keep cut elimination productive, which correspond to criteria like the guardedness
check [37, 38, 8]. Although we use infinite typing derivations, we explicitly avoid syn-
tactic termination checking for its non-compositionality. Nevertheless, we are interested
in implementing such validity conditions as uses of sized types as future work. Relat-
edly, cyclic termination proofs for separation logic programs can be automated [18, 87],
although it is unclear how they could generalize to concurrent programs (in the setting of
concurrent separation logic) as well as codata.

Session types. Session types are inextricably linked with SAX, as it also has an asyn-
chronous message passing interpretation [71]. Severi et al. [80] give a mixed functional
and concurrent programming language where corecursive definitions are typed with
Nakano’s later modality [64]. Since Vezzosi [97] gives an embedding of the later modal-
ity and its dual into sized types, we believe that a similar arrangement can be achieved
in RSAX. In any case, RSAX supports recursion schemes more complex than structural
(co)recursion [59]. Relatedly, Derakhshan et al. [36] give a information flow control ses-
sion type system that generalizes to one that is sound even in the presence of non-termination.

π-calculi. Certain type systems for π-calculi [52, 66, 44] guarantee the eventual success
of communication only if or regardless of whether processes diverge [28]. Considering a
configuration C such that Γ ` C :: (Γ, a : X[n]) where X[i] is a positive coinductive type,
we conjecture that |C|, which has all constraint and arithmetic data erased, is similarly
“productive” even if it may not terminate. Intuitively, C writes a number of cells as a
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function of n then terminates, so |C| represents C in the limit since X[i] is positive coin-
ductive. However, this behavior is more desirable in a message passing setting rather
than in our shared memory setting.

On the other hand, there are type systems that themselves guarantee termination—
some assign numeric levels to each channel name and restrict communication such that a
measure induced by said levels decreases consistently [35, 34, 25]. While message passing
is a different setting than ours, we are interested in the relationship between sizes and
levels, if any. Other such type systems constrain the type and/or term structure; the
language P [76] requires grammatical restrictions on both types and terms, the latter
of which we are trying to avoid. On the other hand, the combination of linearity and a
certain acyclicity condition [105] on graph types [104] is also sufficient. RSAX is able to
guarantee termination despite utilizing non-linear types, but it remains open how type
refinements compare to graph types.

5 Proposed Work: Dependent RSAX (DRSAX)

In this section, we tentatively generalize RSAX to Dependent RSAX (DRSAX) in an at-
tempt to close the gap between processes and proofs. RSAX did so for arithmetic data
via quantification over arithmetic inputs and outputs as well as constraints to relate them
together. Likewise, DRSAX will need the ability to quantify over process inputs and
outputs—addresses—and constraints to relate them together. We do this in two steps:

1. Analogous to arithmetic quantifiers, to RSAX we modify the function and eager
product types to be dependent, i.e., to quantify over process inputs and outputs.
Furthermore, recursive type definitions may bind address variables.

A−, B− := . . . | (x : A)→ B(x)

A+, B+ := . . . | (x : A)⊗ B(x)
A, B, C := . . . | X[e | x]

1. We extend the refinement theory with quantification over and equality of sorted
terms, bringing us to many-sorted first-order logic where we conflate address vari-
ables and (D)(R)SAX values with term variables and terms, respectively. However,
addresses are only meaningful with respect to the processes that write to them. As
a result, we add the constraint x ← P(x); ψ(x) corresponding to modal necessity
in dynamic logic, expanding to the weakest precondition of the assignment of x
by P with respect to φ. That is, x ← P(x); ψ(x) ≡ ∀x. φ(x) ⊃ ψ(x) for some φ
computed, en passant, during type checking. Thus, our process typing judgment
becomes x : A, . . . , y : B `e P :: (z : C) | φ(x, . . . , y, z).
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The combination of these features admits relations between process inputs and out-
puts. As a case study, we define and use observational equality [5, 11], a heterogenous6

equality constraint φ, ψ := . . . | (x : A) = (y : B) that, unlike Martin-Lof’s identity type
and some other type-theoretic treatments of equality, admits extensionality principles for
negative types. This is achieved by fiat—by defining the constraint by recursion on A and
B. We show representative cases below posed as axioms in the refinement theory.

For example, two functions are equal when their applications are equal at equal argu-
ments. Likewise, two lazy records are equal when they are equal at all projections. For
brevity below, we omit sort annotations for quantifiers.

• ( f : (x : A)→ B(x)) = (g : (y : A′)→ B′(y))⇔
∀x. ∀y. (x : A) = (y : A′)⇒
(z : B(x))← f ◦ 〈x, z〉; (w : B(y))← g ◦ 〈y, w〉; (z : B(x)) = (w : B(y))

• (r : &{` : A`}`∈S) = (s : &{` : B`}`∈S)⇔∧
`∈S(x : A`)← r ◦ ` · x; (y : B`)← s ◦ ` · y; (x : A`) = (y : B`)

In general, two objects of negative types are equal when they coincide at all elimina-
tions. On the other hand, two objects of positive type are equal when they have the same
structure. As a result, equal constituents imply equal eager pairs and sums.

• (〈x, z〉 : (x : A)⊗ B(x)) = (〈y, w〉 : (y : A′)⊗ B′(y))⇔
(x : A) = (y : A′) ∧ (z : B(x)) = (w : B′(y))

• (k · x : ⊕{` : A`}`∈S) = (k · y : ⊕{` : B`}`∈S)⇔
(x : A`) = (y : B`) if k ∈ S

• (k · x : ⊕{` : A`}`∈S) = (k′ y : ⊕{` : B`}`∈S)⇔ ⊥ if k, k′ ∈ S and k 6= k′

Like Altenkirch et al. [5], we want to embed the judgmental equality into the observa-
tional equality (“reflexivity”) and have an indiscernibility of identicals reasoning princi-
ple (“substitution”). We pose these as axiom schemas in the refinement theory, as follows.
Note that we write x = y for (x : A) = (y : A) when A is unambiguous.

• Reflexivity: x ≡ y : A⇒ (x : A) = (y : A)

• Substitution: x = y⇒ φ(x)⇔ φ(y)

Note: unlike [5], we leave a type-level equality constraint and coercions along said
equalities to future work. Now that we have settled the high-level design of the type
theory, the next few subsections review core typing rules and examples.

6Heterogeneity makes stating equalities in the presence of dependency easier, i.e., when A and B are
equal but not judgmentally.
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5.1 Typing

In this subsection, we give a representative sample of process typing rules. In line with
[96], we refer to the component of the weakest precondition computed during type check-
ing as the process’s “reflection.”

Identity and Cut. The identity rule states that the reflection of the identity process be-
tween y and x is y ≡ x—we do not annotate the type of a judgmental equality when it is
obvious from context.

Γ, x : A ` x → y :: (y : A) | y ≡ x id

The cut rule is more subtle: in x ← P(x); Q(x), Q(x), reflected by ψ(x), may use the
information φ(x) reflected by P(x), resulting in ∃x. ψ(x). Nested quantifiers in reflected
constraints poses a hurdle for decidable typechecking (relative to decidability of the re-
finement theory), which we discuss in the further proposed work.

Γ ` P(x) :: (x : A) | φ(x) Γ, x : A, φ(x) ` Q(x) :: (z : C) | ψ(x)
Γ ` x ← P(x); Q(x) :: (z : C) | ∃x. ψ(x)

cut

Positive Conjunction and Implication. Similar to the identity rule, positive conjunc-
tion’s right rule reflects the identity of z as a pair of address variables x and y.

Γ, x : A, y : B(x) ` z ◦ 〈x, y〉 :: (z : (x : A)⊗ B(x)) | z ≡ 〈x, y〉 ⊗R

As the sequent calculus counterpart of a dependent elimination principle, ⊗L reveals
the identity of the eliminated address variable as a pair by adding a constraint antecedent
to the context. The remaining left rules for positive types do the same.

Γ, z : (x : A)⊗ B(x), x : A, y : B(x), z ≡ 〈x, y〉 ` P(x, y) :: (w : C) | φ(x, y)
Γ, z : (x : A)⊗ B(x) ` z match (〈x, y〉 7→ P(x, y)) :: (w : C) | ∀x, y. z ≡ 〈x, y〉 ⇒ φ(x, y)

⊗L

The right rule for implication is dual to the left rule for positive conjunction: the re-
flection of a function captures the behavior of its body given an arbitrary function call.

Γ, x : A ` P(x, y) :: (y : B(x)) | φ(x, y)
Γ ` z match (〈x, y〉 7→ P(x, y)) :: (z : (x : A)→ B(x)) | ∀x, y. y ≡ z(x)⇒ φ(x, y) →R

Likewise, the left rule for implication indicates that y contains the result of a function
call.

Γ, z : (x : A)→ B(x), x : A ` z ◦ 〈x, y〉 :: (y : B(x)) | y ≡ z(x) →L
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Recursion Recursive definitions are represented as functions in the refinement theory
that are constrained by their bodies. Reflecting a recursive definition into a refinement
theory is risky, because one cannot typically declare that it is a least, greatest, or nested
fixed point [9]. In our case, however, the recursion scheme instance used by a DRSAX
definition is determined by its sized type refinement.

Γ ` e′ < e y← f i x = Pf (i, x, y) ∞(x : A `e′ Pf (e′, x, y) :: (y : A) | φ(e′, x, y))

Γ, x : A `e y← f e′ x :: (y : A) | y ≡ f (e′, x)
call

To connect definitions to their bodies, we add the following axiom schemes to the
refinement theory.

• Process definition: y ≡ f (i, x)⇔ φ(i, x, y) (where φ is from above)

5.2 Examples

We can now prove within DRSAX properties about the programs we have defined—we
will go through examples of induction and coinduction individually as well as mixed
induction-coinduction.

Example 7 (x + 0 = x). We will start with a classic proof by induction: for a natural
number x, x + 0 = x. First, we need to define addition on the natural numbers. To that
end, it is useful to further refine the type of natural numbers to indicate exact height:
nat[i] = ⊕{zero : i = 0∧ 1, succ : i > 0∧ nat[i− 1]}.

i, j, x : nat[i], y : nat[j] `(i,j) z← add (i, j) (x, y) :: (z : nat[i + j])
z← add (i, j) (x, y) =

x match {zero x′ 7→ y→ z,

succ x′︸ ︷︷ ︸
i>0 assumed

7→ z′ ← add(i− 1, j) (x′, y)︸ ︷︷ ︸
i,j,i>0`(i−1,j)<(i,j) checked

; z ◦ succ z′}

Now, we introduce some notation: {φ} , φ ∧ 1 and x , x ◦ [〈〉] (nesting values
once again). In the proof below, notice our dual use of type refinements: the goal is a
constrained type and sized types are used to ensure soundness of the induction.

i, x : nat[i] `i p← runit i x :: (p : {z← z ◦ zero〈〉; y← add (i, 0) (x, z); y = x})
p← runit i x = x match {zero x′ 7→ p︸︷︷︸

y≡z⇒y=x asserted since x=z

, succ x′ 7→ p′ ← runit (i− 1) x′︸ ︷︷ ︸
y′=x′ assumed

; p︸︷︷︸
y′=x′⇔succ y′=succ x′⇔y=x asserted

}
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Example 8 (Bisimulation). As we noted before, observational equality shines in its treat-
ment of negative types. In this example, we will show that two ways of constructing
an infinite streams of ones coincide. In fact, the extensionality principle endowed to re-
cursive record types allows us to argue for equality by constructing a bisimulation. Let
us define the two streams: one is direct, the other maps the successor function over a
stream of zeroes. First, we let nat = ∃i. nat[i] since the sizes of the stream elements are
irrelevant to termination in this case. The following process definition is direct, recalling
streamA[i] = &{head : A, tail : i > 0 ⊃ streamA[i− 1]}.

i `i y← ones i :: (y : streamnat[i])
y← ones i = y match {head h 7→ h ◦ 〈1, succ (zero〈〉)〉; tail t︸︷︷︸

i>0 assumed

7→ t← ones (i− 1)︸ ︷︷ ︸
i,i>0`i−1<i checked

}

On the other hand, the following defines map, a stream of zeroes, and the stream of
ones resulting from mapping the successor function over the stream of zeroes.

i, f : A→ B, x : streamA[i] `i y← map i ( f , x) :: (y : streamA[i])
y← map i ( f , x) = y match {head h 7→ h′ ← x ◦ head h′; f ◦ 〈h′, h〉,

tail t′ ← x ◦ head t′; t← map (i− 1) ( f , t′)}
i `i y← zeroes i :: (y : streamnat[i])
y← zeroes i = y match {head h 7→ h ◦ 〈0, zero〈〉〉; tail t 7→ t← zeroes (i− 1)}
i `i y← ones′ i :: (y : streamnat[i])
y← ones′ i = f ← f match (〈〈i, x〉, z〉 7→ z ◦ 〈i + 1, succ x〉); z← zeroes i; y← map i ( f , z)

Finally, we can prove that both streams are equal. First, we introduce a type synonym
for the proof goal:

bisim _t[i] = {o ← ones i; o′ ← ones′ i; o = o′}
To develop our proof strategy, we expand o = o′ below.

o = o′ ⇔ (h← o ◦head h; h′ ← o′ ◦head h′; h = h′)∧ (i > 0⇒ t← o ◦ tail t; t′ ← o′ ◦ tail t′; t = t′)

It’s immediate that the heads are (judgmentally, therefore observationally) equal, so it
suffices to recurse on the tails, constructing a bisimulation. Furthermore, the argument i
decreases, corresponding to soundness of coinduction.

i `i p← bisim i :: (p : bisim _t[i− 1])

p← bisim i = (p′ : i > 0 ⊃ bisim _t[i− 1])← bisim (i− 1); p︸︷︷︸
note t≡ones (i−1) and t′≡ones′ (i−1)
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Above, we have used a trick introduced by Leino and Moskal [56] in the context of
coinduction in Dafny: we cut in the recursive call assuming i > 0 by annotating the cut
formula (type).

Example 9 (Idempotence of projection). In our final example, we will prove an idempo-
tence property of a mixed inductive-coinductive program: projection of left-fair streams.
This is technically quite challenging, as we must reason about equality using mixed induction-
coinduction. Recall that projection has the signature i, j, x : lfairA,B[i, j] `(i,j) y← proj (i, j) x ::
(y : streamA[i]), where:

lfairA,B[i, j] = ⊕{now : &{head : A, tail : lfairν
A,B[i, j]}, later : B⊗ lfairµ

A,B[i, j]}
lfairν

A,B[i, j] = i > 0 ⊃ ∃j′. lfairA,B[i− 1, j′]

lfairµ
A,B[i, j] = j > 0∧ lfairA,B[i, j− 1]

To apply projection twice, we need a process definition (injection) that reflects streams
back into left-fair streams.

i, x : streamA[i] `i y← inj i x :: (y : lfairA,B[i, 0])
y← inj i x =

y′ ← y′ match {head h 7→ x ◦ head h,

tail t︸︷︷︸
i>0 assumed

7→ s← x ◦ tail s; t′ ← inj (i− 1) s︸ ︷︷ ︸
i,i>0`i−1<i checked

; t ◦ 〈j, t′〉};

y ◦ now y′

We set up the roundtrip of projection-injection-projection as our goal.

idem _t[i, j | x] = {y← proj (i, j) x; x′ ← inj i y; y′ ← proj (i, 0) x′; y′ = y}
Recall that y = y′ expands to the following.

y = y′ ⇔ (h← y ◦head h; h′ ← y′ ◦head h′; h = h′)∧ (i > 0⇒ t← y ◦ tail t; t′ ← t′ ◦ tail t′; t = t′)

With some aggressive variable substitution, let us take a look at our proof obligations.
Below, the notation .` indicates projection of a record in the refinement term theory.

• proj(i, 0, inj(i, proj(i, j, x))). head = proj(i, j, x). head

• i > 0⇒ proj(i, 0, inj(i, proj(i, j, x))). tail = proj(i, j, x). tail

The first is trivial, the second requires case analysis on x.
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• i > 0⇒ proj(i, 0, inj(i, proj(i, j, now(x′)))). tail = proj(i, j, now(x′)). tail

• j > 0⇒ proj(i, 0, inj(i, proj(i, j, pad(〈b, x′〉)))). tail = proj(i, j, pad(〈b, x′〉)). tail

In the first sub-case, the assumption i > 0 gives us access to the tail of the left-fair
stream. In the second sub-case, the assumption j > 0 supersedes that of i. Both sub-cases
are then established by recursion, as follows.

i, j, x : lfairA,B[i, j] `(i,j) p← idem (i, j) x :: (p : idem _t[i, j | x])
p← idem (i, j) x =

x match {now s 7→ s′ ← s ◦ tail s′; s′ match (〈j′, x′〉 7→ p′ ← idem (i− 1, j′) x′; p ),

pad〈b, x′〉 7→ p′ ← idem (i, j− 1) x′; p }

5.3 Related Work

As we mentioned in the introduction, candidate concurrent type theories attempt to retrofit
dependent types onto substructural session types, dubbed dependent session types. In
the opposite direction, there has been work on embedding session-typed process calculi
into dependent type theories, which we call embedded session types. Both solutions have
similar limitations, as we will see below.

Dependent session types. Toninho et al. [93] initiated the line of work on dependent
session types by presenting a session-typed process calculus in correspondence with first-
order intuitionistic linear logic over a domain of non-linear proof terms. In particular,
proof terms are not allowed to refer to channels with which processes communicate in
the linear layer. In their retrospective paper ten years later [92], they note that most sub-
sequent developments ([94, 32, 89], etc.) have similar issues precisely because non-linear
dependence on linear objects must be restricted.

As somewhat of an exception to the rule, Toninho et al. [95] allow proof terms to de-
pend on processes by way of a contextual monad following Toninho et al. [91]. While this
relaxes the aforementioned restriction, their embedding of the functional (proof term)
layer into the process layer indicates that each layer duplicates the other. As we men-
tioned in the introduction, DRSAX need not make this distinction.

Embedded session types. Dually, another line of work seeks to embed session type
systems into existing dependent type theories, allowing meta-level reasoning about pro-
cesses and the exploitation of existing language infrastructure [16, 100, 63, 78, 60]. Em-
bedded implementation is certainly not opposed by DRSAX nor the line of work above,
but moving the burden of proof to the meta level means that one must reason manually
about the typing (especially if the object language is substructural and the metalanguage
is structural) and operational semantics of programs. In general, reasoning internal to a
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type theory is more succinct since proofs take place modulo typing, judgmental equality,
etc.

Dependent call-by-push-value. The polarized nature of DRSAX suggests a compari-
son to systems based on dependent call-by-push-value [67]. In particular, Niu et al.’s
cost-aware logical framework [65] enforces a (generalized) phase distinction [83] between
the intensional/cost and extensional/behavioral aspects of a program. Cost reasoning,
which is the core of parallelism, is the subject of future work (in the context of SAX con-
figurations). Lastly, sized type refinements seem to be related to their use of recurrences
as termination metrics for non-structurally inductive functions, although we are also able
to handle coinduction and mixed induction-coinduction.

Deductive verification. Dafny [54], F∗ [84], Why3 [41], and languages with liquid types
[74, 96] allow formal verification by reflecting program dynamics into a refinement the-
ory. Although we do not treat other effects, our aim is a native treatment of concurrency
unlike in [55, 84, 77, 51]. Moreover, DRSAX is the only system to treat mixed induction-
coinduction.

6 Further Proposed Work

In this proposal, we have worked towards a concurrent type theory and its metatheory. In
this section, we summarize the pending research questions and future work not covered
by this proposal. The primary goals are as follows:

• Finalize the design of DRSAX. Time permitting, we aim to explore the issues sur-
rounding relative decidability of typechecking that we raised in the previous sec-
tion.

• Metatheory. We will prove the termination of DRSAX programs by transporting our
argument for RSAX to the dependent setting (translation to ω typing). Furthermore,
as we indicated in the third section, we will semantically characterize (co)inductive
types following [56].

Now, let us summarize the fallback options in case one or both options do not pan out.

• The final design of DRSAX may involve cutting back on the complexity of the re-
finement layer, especially observational equality. For example, we could restrict the
theory of equality to purely positive types. The resulting system would be similar
to a dependent extension of refined session types [46]. At worst, we may fallback
completely to RSAX, which still retains index dependency (over arithmetic). In this
case, we could investigate different refinement theories and compare their expres-
sive power.
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• If proving termination is insurmountable, we could fall back to a weaker metathe-
ory: for example, type soundness.

We now identify four avenues of future work that will not be covered in the proposed
work.

• Implementation: we are interested in developing a convenient surface language for
(D)RSAX, following Rast [30], an implementation of resource-aware session types
that includes arithmetic refinements.

• Richer types: as we mentioned in the second section, our long-term goal is to in-
terpret adjoint SAX [71] within our framework, covering substructural dependent
types. Furthermore, we are interested in generalizing to polymorphic and higher-
kinded types [29].

• Message passing: we would like to transport our results to the asynchronous mes-
sage passing interpretation of SAX [71], avoiding technically difficulties with typed
asynchronous π-calculi [39].

• Effects: Rocha et al. [73] suggest that shared state and non-determinism can be incor-
porated by moving to differential linear logic; however, it is unclear how to trans-
port these results to a structural and intuitionistic setting.
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