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Abstract
The theory of finite state machines in general, and of synchronous rational relations
in particular, plays a central role in the study of one-dimensional cellular automata.
We discuss a uniform framework to answer questions about finite cellular automata,
as well as one-way and two-way infinite ones. The first-order theory of the global map
is decidable in all three cases, and feasible algorithms are available for sufficiently
simple questions.

1 Introduction

One-dimensional cellular automata are substantially different from their higher-
dimensional counterparts in that they are easily described in terms of finite state
machines. For example, the cover language of a two-sided shift associated with a
cellular automaton is always regular, and one can measure its complexity in terms of
the associated minimal automaton. Putting aside issues of computational complexity,
the state complexity of a regular language is fairly easy to compute and there are
efficient algorithms that can be brought to bear. While these methods are confined to
languages recognized by finite automata, it was already pointed out by Dana Scott
in 1967 [44] that the use of finite automata to define functions and relations should
be considered to be, at minimum, of equal importance.

The author (along with many other people) has come recently to the conclusion that the
functions computed by the various machines are more important–or at least more basic–than
the sets accepted by these devices.
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In fact, in their seminal paper [41], Rabin and Scott already explored some of the
properties of functions defined be finite state machines, now commonly referred
to as rational transductions. In the context of one-dimensional cellular automata,
transductions arise naturally, since we can think of the global map of the automaton
as a rational transduction, a function on a suitable class of words. One complicating
factor here is that the words in question are naturally one-way or two-way infinite,
so the machinery of finite state machines needs to be generalized to these types of
words. In addition, some amount of information can still be obtained by studying
associated languages of finite words.
Rational transductions themselves are easily computable and sidestep issues of un-
decidability, but their behavior under iteration can be complicated. To wit, it is easy
to see that the one-step relation of a Turing machine is a rational transduction, and
indeed a fairly simple one that mostly copies its input to output. Hence, iteration
and the study of orbits of cellular automata will necessarily encounter issues of un-
decidability. In fact, attempts to formalize a classification based on orbits along the
lines of Wolfram’s four classes leads to decision problems in the first few levels of
the arithmetic hierarchy [47]. The same is true for other classifications that are more
closely associated with topological dynamics [33, 32]. Worse, as shown by Baldwin
and Shelah [1], it seems difficult to formulate any hierarchy of cellular automata
based on notions of computational complexity, rather than the classical ideas from
symbolic dynamics. As the authors make clear, input/output conventions play a ma-
jor role when it comes to interpreting symbolic dynamical systems as computational
devices. One can try to sidestep these coding issues by focusing instead directly
on the complexity of the orbit relation: how difficult is it to determine whether a
configuration lies in the orbit of another? This approach was first proposed by Davis
[17] in an attempt to develop a more robust notion of computational universality.
As it turns out, in the context of cellular automata, orbit complexity produces a
highly complicated hierarchy that involves all semidecidable degrees, since one can
construct a particular linear cellular automaton whose orbit relation is of exactly that
of some given degree d, see [51]. In fact, one can construct the cellular automaton
in a way that the orbit relation has some degree d1, whereas the confluence relation
has another given degree d2. Somewhat surprisingly, one can even build a reversible
cellular automaton whose orbit relation has some specified degree (though conflu-
ence has necessarily the same degree in this case). Testing membership in these
degree-based classes is again undecidable, e.g., it is already Σ3-complete to check
whether the orbit relation is decidable, and it is Σ4-complete to check whether the
orbit relation is r.e.-complete.
By contrast, we will here narrowly focus on properties of linear cellular automata
that are necessarily decidable and can be algorithmically determined by exploiting
the theory of regular languages and rational transductions. In a sense, this approach
goes back to Büchi’s application of automata theory to the Entscheidungsproblem
for monadic second order logic. Another milestone was the study of automatic
groups by Epstein [21]. More generally, one considers automatic structures, i.e.,
first-order relational structures whose carrier set and relations can be described by
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finite state machines, see [28, 37]. The use of finite state machines to solve decision
problems over various logics has also become a staple in formal verification methods
in computer science, see [11] and [27] for extensive bibliographies.
In the context of linear cellular automata there are three types of automatic structures
that need to be analyzed: structures over finite words, one-way infinite words and
two-way infinite words. We will refer to these scenarios as word automatic, 𝜔-
automatic and 𝜁-automatic, respectively. Unsurprisingly, the methods applied in all
three cases are quite similar in principle, but they differ substantially in the level
of technical machinery required in the associated algorithms. In particular the two-
way infinite cases poses considerable algorithmic problems and typically requires
human intervention to obtain feasible solutions. Still, one fundamental property of
automatic structures is that they all have a decidable first-order theory by avoiding
concepts such as orbits that inherently require a stronger logical framework such
as second-order or transitive closure logic. In a sense, the results obtained in this
manner are local in nature, one can explore only local structures in phase space such
as questions of reversibility, openness, surjectivity and so on. As we will see, the
framework provided by finite state machines provides elegant and simple solutions
to questions related to linear cellular automata in all the situations where it can be
applied.
We are going to outline the basic arguments, but, in the interest of brevity, we refer
the reader to the copious literature. For general background on finite state machines
see [26, 43, 40]. A discussion of recognizable languages of two-way infinite words
can be found in [38] and [39]; in the context of cellular automata, two-way infinite
words appear in [15] and [14]. For background on decision problems in logic and
the use of automata-theoretic methods [6, 7, 8, 45, 2, 35].

2 Symbolic Dynamics and Automata

2.1 Finite Automata

A transition system is a directed graph 𝑇 = ⟨𝑄, 𝐸 ⟩ whose edges are labeled by
letters of some alphabet Σ. Alternatively, we can also think of 𝑇 as a transition
relation 𝑇 ⊆ 𝑄 × Σ × 𝑄. Correspondingly, the transition system is deterministic if
the relation is single-valued, co-deterministic if the reversal of the relation is single-
valued and complete if the relation is total. We are only interested in the case when
the state set 𝑄 is finite; similarly, the alphabet Σ is required to be a finite, non-empty
set. By a word over Σ we mean an element of Σ∗, the free monoid generated by Σ; a
language over Σ is any subset of Σ∗.
Paths in 𝑇 are naturally associated with label sequences, words in Σ∗. A finite
state machine or automaton A consists of a transition system 𝑇 together with an
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acceptance condition. The acceptance condition is always expressed in terms of path
existence in the transition system. In the most basic case, one chooses two subsets
of 𝐼 and 𝐹 of 𝑄 and selects paths with source in 𝐼 and target in 𝐹. This produces the
acceptance language L(A) ⊆ Σ∗; one also says that A recognizes the language. A
language is regular if it is recognized by some automaton. We refer to these machines
as acceptors, as opposed to the transducers introduced in a moment.
In a semiautomaton we assume 𝑄 = 𝐼 = 𝐹, so all paths in the transition system
are considered. An automaton is deterministic or co-deterministic whenever the
underlying transition system is so deterministic or co-deterministic. The automaton
is ambiguous if there are two distinct paths in the transition system carrying the same
label and with the same source and target. A partial deterministic finite automaton
(PDFA) has a deterministic transition system and a single initial state. A deterministic
finite automaton (DFA) is, in addition, required to be complete. The state complexity
of an automaton is the number of its states. It is well-known that every regular
language is recognized by a unique (up to isomorphism) DFA of minimum state
complexity, the so-called minimal automaton of the language. Hence we can define
the state complexity of a regular language as the state complexity of the corresponding
minimal DFA. Regular languages enjoy numerous closure properties, they form a
Boolean algebra, are closed under concatenation, Kleene star, reversal, homomorphic
images and preimages. Moreover, all these closure properties are effective and often
polynomial time, the key exception being determinization which can be exponential
in time and space, see [26, 43, 40, 5].
Acceptors recognize languages, in order to address relations on words we need a
slight generalization. The most basic kind of relation on words has the form

𝑅 ⊆ Σ∗ × Σ∗

and we will refer to this type of a relation as a transduction. We write the elements
of a transduction as 𝑢/𝑣 where 𝑢, 𝑣 ∈ Σ∗. A transduction is rational if there exists a
finite automaton with labels in Σ∗ × Σ∗ that recognizes 𝑅: 𝑢/𝑣 ∈ 𝑅 iff there is a path
in the transition system from 𝐼 to 𝐹 labeled by 𝑢/𝑣. We will refer to these automata
as transducers, as opposed to the language acceptors from above. Needless to say,
we insist that the number of transitions is still finite. One can easily verify that the
labels in a transducer can be chosen to be of the form 𝑎/𝜀, 𝜀/𝑏 and 𝑎/𝑏 where
𝑎, 𝑏 ∈ Σ, without affecting the class of rational relations. By a well-known theorem
due to Elgot and Mezei [20], rational transductions are closed under composition.
Analogous definitions can be given for 𝑘-ary relations in general. It is convenient to
visualize the automata recognizing transductions as being equipped with two one-
way, read-only input tapes that operate independently and are controlled by a single
finite state unit.
As was already pointed out in the Rabin-Scott paper, there are substantial differences
between regular languages and rational relations in general. While the latter are
closed under union, essentially by definition, they fail to be closed under intersection
and complement. In general, nondeterminism is essential for transducers, while it
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can be eliminated for acceptors—at least if one ignores complexity issues. As a
consequence, decision algorithms based on representing the structure in question by
finite automata have to avoid rational relations in general.
A way to sidestep these problems is to focus on synchronous transductions where
all the transition labels are of the form 𝑎/𝑏, 𝑎, 𝑏 ∈ Σ, also referred to as alphabetic
or letter-to-letter transductions. Synchronous transductions were introduced in [20]
and rediscovered in [23]. In essence, a synchronous relation is but a regular language
over a product alphabet Σ × Σ and enjoys similar closure properties. Note that these
relations are trivially length-preserving. By another theorem of Elgot and Mezei,
any length-preserving rational transduction is already synchronous in the sense
that there is a synchronous transducer that recognizes the transduction, though the
corresponding machine may be more difficult to construct. In terms of the automaton
model, the tape heads of the two input tapes are moving in lockstep. For two words
𝑥, 𝑦 ∈ Σ𝑛, one refers to

𝑥:𝑦 =
𝑥1 𝑥2 . . . 𝑥𝑛−1 𝑥𝑛

𝑦1 𝑦2 . . . 𝑦𝑛−1 𝑦𝑛

as the convolution of 𝑥 and 𝑦, a string over the product alphabet Σ × Σ. This idea
naturally extends to strings 𝑥 and 𝑦 of differing lengths by padding out the shorter
string to the right, using a specially designated padding symbol. A great many
important word relations are synchronous in this sense, prime examples being lexi-
cographic order, concatenation and binary addition. Since global maps are naturally
length-preserving we have no need for padding.
A Mealy automaton is a particularly simple type of synchronous transducer where
the projection that omits the second component of all labels produces a deterministic
transition system. In other words, for any two transitions 𝑝

𝑎/𝑏
−→ 𝑞 and 𝑝

𝑎/𝑏′

−→ 𝑞′ we
can conclude that 𝑏 = 𝑏′ and 𝑞 = 𝑞′. By choosing an initial state, we obtain a partial,
length-preserving function on words. These devices are called output modules in
Eilenberg [19].
To analyze computations of a finite state machine it is convenient to extend the
transition system of the automaton along an additional dimension of time. Suppose
we have a transition system 𝑇 = ⟨𝑄, 𝐸 ⟩ over Σ and a word 𝑥 ∈ Σ∗ of length 𝑛. We
define the unfolding of 𝑇 along 𝑥 to be the directed graph with vertex set 𝑄 × [0, 𝑛]
and edges

(𝑝, 𝑡) 𝑎−→ (𝑞, 𝑡+1) for 𝑎 = 𝑥𝑡+1, 𝑝
𝑎−→ 𝑞 ∈ 𝐸

We write unf
(
𝑇, 𝑥

)
for the unfolding of 𝑇 along 𝑥. For clarity, we will often refer

to the index 𝑡 as time 𝑡. A traversal in the unfolding is a path from a point at time
0 to a point at time 𝑛. When 𝑇 is the transition system of a semiautomaton A, the
computations of A on input 𝑥 are represented by traversals in the unfolding. Hence,
the multiplicity of a word 𝑥 with respect to A is simply the number of traversals in
the unfolding. An example of an unfolding is shown in figure 1; the semiautomaton
in question will be discussed in section 2.2.
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Fig. 1 The unfolding of a de Bruijn semiautomaton along the word 01010101010. There are 8
traversals in two connected components.

So far, our definitions all revolve around finite words. To address the one-way
infinite or two-way infinite sequences one encounters in symbolic dynamics, we
generalize to 𝜔-words of the form N → Σ and 𝜁-words of the form Z → Σ.
We write Σ𝜔 and Σ𝜁 for the corresponding sets of words. Our definitions related
to transition systems can be lifted, mutatis mutandis, in a fairly natural fashion
to these infinite words. For example, for an 𝜔-word, the unfolding of a transition
system is over N and a traversal is a one-way infinite path with source at time 0;
similarly, in the two-way infinite case, a traversal is any two-way infinite path in the
unfolding. Difficulties do arise in connection with acceptance conditions suitable
to these settings. We will comment section 3.2.1 on appropriate choices that allow
us to handle infinite words in a manner that preserves the critical properties in the
finite case. For a detailed discussion of infinite words and their associated automata
we refer the reader to [39]. Unsurprisingly, reasoning about infinitary acceptance
conditions becomes substantially more complicated and generally requires tools of
infinite combinatorics such as Kőnig’s lemma, e.g., for correctness proofs related to
automata-theoretic algorithms.

2.2 Subshifts and Linear Cellular Automata

A subshift or shift space is a subset X of Σ𝜁 that is topologically closed in the
sense of the natural product topology on Σ𝜁 and shift-invariant: 𝜎(X) = X where
𝜎(𝑋)𝑖 = 𝑋𝑖+1. Infinite words 𝑋 can be associated with a language of finite words,
the cover cov(𝑋) ⊆ Σ∗, also known as the set of blocks of 𝑋 , consisting of all
finite factors of 𝑋 . For a language 𝐿 of infinite words, the cover is the union of
the individual covers: cov(𝐿) = ⋃

𝑋∈𝐿 cov(𝑋). Since Σ𝜁 is compact, a shift space
can be reconstructed from its cover: a configuration 𝑋 is in X iff it is the limit of
a sequence of words in the cover. Morphisms between shift spaces are continuous
maps 𝑓 : X → Y that commute with the shift.



Linear Cellular Automata and Automaticity 7

A shift space is sofic or a sofic system if its cover is a regular language. It is clear that
Σ∗−X is a two-sided ideal, that is to say, a set 𝐼 ⊆ Σ∗ such that Σ∗ 𝐼 Σ∗ = 𝐼, the ideal
of forbidden blocks. A basis of an ideal is any subset that generates it and a subshift
that admits a finite bases for this ideal is a subshift of finite type. It was shown by
Weiss [54] that sofic systems are the smallest class of subshifts that contains all shifts
of finite type and is closed under morphisms. Moreover, the morphism can always
be chosen to be finite-to-one according to [13].
By the Lyndon-Curtis-Hedlund theorem [25], the morphisms themselves are the
global maps of a linear cellular automaton. For our purposes, a linear cellular
automaton (LCA) is represented by its local map or (local) rule 𝜌 : Σ𝑤 → Σ where
Σ is the alphabet of the cellular automaton and we may safely assume that the width 𝑤

is at least 2. We will always assume that Σ is the digit alphabet Σ𝑘 = {0, 1, . . . , 𝑘−1},
so it is natural to identify local rules over a Σ𝑘 with rule numbers in the interval
[0, 𝑘 𝑘𝑤 − 1] in the obvious fashion.
In symbolic dynamics and coding theory [32, 34] global maps are also referred to
as sliding block codes and it is customary to control the application of the local map
more carefully. Specifically, one considers two integers 𝛼, the anticipation, and 𝛽, the
memory, where 𝛽 ≤ 𝛼. For any word 𝑋 = (𝑥𝑖), finite or infinite, that have positions
𝑖 ≤ 𝑗 , define the block from 𝑖 to 𝑗 to be the factor 𝑋 [𝑖: 𝑗] = 𝑥𝑖𝑥𝑖+1 . . . 𝑥 𝑗 ∈ Σ 𝑗−𝑖+1 of
𝑋 . Now suppose we have 𝑤 = 𝛼 − 𝛽 + 1 ≥ 1. We can then define the global map 𝐺𝜌

associated with 𝜌 by
𝐺𝑟 (𝑋) (𝑖) = 𝜌

(
𝑋 [𝑖 + 𝛽:𝑖 + 𝛼]

)
provided that the indicated positions in 𝑋 exist. This is always the case for two-way
infinite words, but requires a bit more attention otherwise. First off, for our purposes
it is safe to assume that 𝛽 ≤ 0 ≤ 𝛼. In fact, for 𝑤 odd, we can keep the position of
the output letter centered be setting 𝛼 = ⌊𝑤/2⌋ and 𝛽 = −𝛼. In the even case we
think of adding a phantom last variable to 𝜌, so that 𝛼 = ⌊𝑤/2⌋ − 1 and 𝛽 = −𝛼 − 1.
We can now handle the missing position problem and associate the following global
maps with any local map 𝜌:

word map 𝜌∗ : Σ≥𝑤 → Σ+

periodic word map 𝜌p : Σ+ → Σ+

fixed word map 𝜌f : Σ+ → Σ+

𝜔 global map 𝜌𝜔 : Σ𝜔 → Σ𝜔

𝜁 global map 𝜌𝜁 : Σ𝜁 → Σ𝜁

For a finite word 𝑋 of length 𝑛, 𝜌∗ (𝑋) = 𝜌(𝑋 [1:𝑤]) . . . 𝜌(𝑋 [𝑛 − 𝑤 + 1:𝑛]) is a word
of length 𝑛 − 𝑤 + 1. Similarly, 𝜌f (𝑋) = 𝐺𝜌

(
0−𝛽𝑋0𝛼

)
for fixed boundary conditions

and 𝜌p (𝑋) = 𝐺𝜌

(
𝑋 [𝑛 + 𝛽 − 1:𝑛] 𝑋 𝑋 [1:𝛼]

)
for periodic ones. The last two maps are

naturally length-preserving. In the infinite scenario we have 𝜌𝜔 (𝑋) = 𝐺𝜌

(
0−𝛽 𝑋

)
,

for one-way infinite words, and 𝜌𝜔 (𝑋) = 𝐺𝜌

(
𝑋
)
, for two-way infinite words. Note

that we exclude the empty word in the finite case, this choice will be visible in the
generating functions in examples below.
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Since cellular automata 𝜌 are morphisms, we obtain a shift space by setting S =

𝜌𝜁 (Σ𝜁 ). We write L(𝜌) ⊆ Σ∗ for the cover of this space. It is easy to see that these
spaces are always sofic: we can construct a semiautomaton based on a de Bruijn
graph whose edges are labeled by the local map of the CA. More precisely, suppose
the cellular automaton uses alphabet Σ and has width 𝑤 ≥ 2. Then the de Bruijn
graph over Σ of order 𝑤 − 1 has vertex set Σ𝑤−1 and directed edges 𝑎𝑥 → 𝑥𝑏 where
𝑎, 𝑏 ∈ Σ and 𝑥 ∈ Σ𝑤−2. Attaching the label 𝜌(𝑎𝑥𝑏) to edge 𝑎𝑥 → 𝑥𝑏, we obtain a
semiautomaton B(𝜌) that recognizes the cover of S.
Moreover, using standard automata-theoretic methods, one can decide whether
a space 𝜌𝜁 (Σ𝜁 ) is finite type. Specifically, we can compute an automaton ac-
cepting a minimal basis for the ideal of forbidden blocks and then test whether
the language of the automaton is finite. For example, there are 176 elementary
cellular automata producing subshifts of finite type and rule 77 has ideal base
00011, 00111, 11000, 11100, 0001000, 1110111. The growth rate of the ideal lan-
guage is given by the recurrence 𝑎𝑛 = 2𝑎𝑛−1 − 𝑎𝑛−3 + 𝑎𝑛−5 with initial con-
ditions 1, 2, 4, 8, 16, 28. By contrast, the ideal base for rule 18 is of the form
11

(
0+10+1

)∗1 and the growth rate of the ideal language is given by the recurrence
𝑎𝑛 = 3𝑎𝑛−1 − 𝑎𝑛−2 − 𝑎𝑛−5 with initial conditions 1, 2, 4, 7, 13.
From the perspective of rational relations, it is clear that all the maps defined above
are rational transductions. In fact, all these transductions other than the shrinking
word map are synchronous. In the infinite case we consider again the de Bruijn graph,
but this time the edge 𝑎𝑥 → 𝑥𝑏 is labeled 𝑏/𝜌(𝑎𝑥𝑏), see figure 2. These transducers
are of the Mealy type, if one allows for multiple initial states. Strictly speaking, the
corresponding transduction involves a shift, see below for a construction that centers
the output. In a sense, shifted output is irrelevant for our purposes, but it may affect
the size of the machines involved, see section 3.3.
For finite words we need to modify the de Bruijn transducer slightly. For simplicity,
let us only consider periodic boundary conditions for width 3, the argument can be
easily adjusted to other widths and the fixed boundary case. The transducer for 𝜌 has
states of the form (𝑥𝑦𝑧, 𝑙𝑟) ∈ Σ3 ×Σ2 where 𝑙 and 𝑟 are used to nondeterministically
guess the leftmost and rightmost letter in the input, respectively. The transitions take
the form

⊥
𝑙/𝑒
−−→ 𝑟𝑙𝑧, 𝑙𝑟 𝑒 = 𝜌(𝑟, 𝑙, 𝑧)

𝑥𝑦𝑧, 𝑙𝑟
𝑧/𝑒
−−→ 𝑦𝑧𝑢, 𝑙𝑟 𝑒 = 𝜌(𝑦, 𝑧, 𝑢)

𝑥𝑦𝑟, 𝑙𝑟
𝑟/𝑒
−−→ ⊤ 𝑒 = 𝜌(𝑦, 𝑟, 𝑙)

While this transducer is nondeterministic as defined, it can be determinized and
turned into a Mealy automaton. The result for elementary cellular automaton number
150, the exclusive or of all three bits, is shown in figure 3. The given construction is
based on using memory −1 and anticipation of 1, but one could also choose memory
−2 with no anticipation. As far as efficiency is concerned, there seems to be no clear
advantage to either approach.
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Fig. 2 The standard synchronous de Bruijn transducer for an elementary cellular automaton with
local rule 𝜌. The corresponding de Bruijn acceptor is obtained by removing the labels in the upper
track.
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Fig. 3 A Mealy machine that recognizes 𝜌p associated with elementary cellular automaton number
150. To avoid more visual clutter, we have written transition labels 𝑎/𝑏 as 𝑎𝑏.

The cover languages L(𝜌) have a number of special properties: in particular, they
are transitive, factorial and extensible. Let 𝐿 ⊆ Σ∗, 𝐿 ≠ ∅, 𝜀 be a language. Then
𝐿 is factorial if 𝐿 is closed with respect to factors: 𝑢𝑥𝑣 ∈ 𝐿 implies that 𝑥 ∈ 𝐿.
Language 𝐿 is transitive iff 𝑢, 𝑣 ∈ 𝐿 implies that 𝑢𝑥𝑣 ∈ 𝐿 for some 𝑥; likewise, a
finite state machine is called transitive iff its transition system has only one strongly
connected component. Lastly, 𝐿 is extensible if for all 𝑥 ∈ 𝐿 there exist 𝑎, 𝑏 ∈ Σ

such that 𝑎𝑥𝑏 ∈ 𝐿. We refer to such languages as TFE languages. It was shown by
Darji and Seif [16] that it is decidable whether a given regular language is a cover
language.
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As a consequence, the standard minimal DFA associated with any regular language
is arguably not a good representation for cover languages. We refer to a transitive
semiautomaton as a Fischer automaton. Clearly, the acceptance language of a Fischer
automaton is always TFE. These automata were first introduced by Fischer [22] and
discovered independently by Beauquier [3] in the guise of the 0-minimal ideal
in the syntactic semigroup of L(𝜌). The minimal Fischer automaton is unique
up to isomorphism, and is the smallest deterministic semiautomaton accepting a
given TFE regular language. As in the case of standard minimal DFA, behavioral
equivalence provides a natural epimorphism from any deterministic semiautomaton
to the minimal Fischer automaton. Since de Bruijn graphs are strongly connected and
even Hamiltonian, our de Bruijn automata B(𝜌) are in particular Fischer automata,
albeit nondeterministic ones in general.
From a computational perspective, a simple way to determine the minimal Fischer
automaton is to first compute the standard minimal DFA A, see [49]. We may safely
assume the language is not equal to Σ∗, so the diagram of A has a unique sink.
Moreover, the diagram contains a unique strongly connected component that that
has outgoing edges only to the sink. The subautomaton induced by this strongly
connected component is the minimal Fischer automaton. In the context of cellular
automata, the only potentially non-polynomial step in this computation is the deter-
minization of the original de Bruijn automaton. Unfortunately, exponential blowup
is possible in these circumstances and occurs with some frequency. More precisely,
consider a de Bruijn automaton over a binary alphabet that is both deterministic
and co-deterministic; we will refer to these automata as permutation automata since
every letter in the alphabet induces a permutation of the state set. The language of a
permutation automaton is trivially Σ∗, but changing the label of a single transition
produces a nondeterministic machine, a 1-permutation automaton in reference to the
Hamming distance of the labeling to the nearest permutation labeling. If the switch
occurred at a self-loop, the 1-permutation automaton will exhibit full exponential
blowup during determinization. Indeed, in this case, the corresponding minimal DFA
consists of a single large strongly connected component, the Fischer automaton, plus
a sink. It seems that this occurs for exactly one half of the 1-permutation automata
obtained from (𝑤, 2) cellular automata. This conjecture has been computationally
verified up to width 5, but remains open and seems difficult.

2.3 Surjectivity and Injectivity

De Bruijn automata and their unfoldings provide a simple framework to explain
many of the classical results in symbolic dynamics, with an emphasis on attendant
algorithms. Since we are dealing with several types of global maps, we will refer,
say, to a local rule being 𝑛-surjective, 𝜔-surjective and 𝜁-surjective, depending on
whether we consider words in Σ𝑛, Σ𝜔 , Σ𝜁 . In the finite case we assume periodic
boundary conditions by default and will not further burden our notation. The goal
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here is to characterize all 𝑛 for which the property in question obtains. For example,
we can establish the characterization of surjectivity from Hedlund’s seminal paper
[25] as follows.
A semiautomaton is 𝑑-deterministic for some 𝑑 ∈ N if for any two computations 𝜋 and
𝜋′ of length 𝑑+1 with the same label and the same source we have 𝜋(1) = 𝜋′ (1). Thus,
a 0-deterministic automaton is simply a deterministic automaton. The definition for
𝑑-codeterministic automata is analogous. A universal semiautomaton is balanced
if all words have the same multiplicity in the automaton. This somewhat peculiar
property is of interest for the semiautomata B(𝜌), where a simple path counting
argument shows that, if B(𝜌) is indeed balanced, then the uniform multiplicity must
already be 𝑘𝑤−1.

Theorem 1 Let 𝜌 be a (𝑘, 𝑤) linear cellular automaton. Then 𝜌 is 𝜁-surjective iff
the de Bruijn automaton B(𝜌) is balanced iff B(𝜌) is unambiguous.

Theorem 2 Let 𝜌 be a (𝑘, 𝑤) linear cellular automaton. Then 𝜌 is 𝜁-open iff iff the
de Bruijn automaton B(𝜌) is 𝑑+-deterministic and 𝑑−-deterministic for some 𝑑+ and
𝑑− .

Theorem 3 Let 𝜌 be a (𝑘, 𝑤) linear cellular automaton. Then 𝜌 is 𝜁-injective iff the
non-transient part of B(𝜌)2 is the diagonal.

We will sketch some of the arguments from the perspective of automata theory. The
multiplicity condition clearly implies surjectivity by compactness. For the opposite
direction, let 𝑥 be a word of minimum multiplicity 𝑚 ≥ 1. Since the out-degree
of every state in the de Bruijn automaton B(𝜌) is 𝑘 , all extensions 𝑥𝑦 must also
have multiplicity 𝑚. In particular, all extensions 𝑥Σ𝑤−1𝑥 have multiplicity 𝑚. Now
consider the unfolding of any such word 𝑥𝑧𝑥. The number of traversals in the slice of
unf

(
B(𝜌), 𝑥𝑧𝑥

)
from 𝑛 to 𝑛 +𝑤 − 1 has cardinality 𝑘𝑤−1, the same as the cardinality

of Σ𝑤−1; hence we must have 𝑚 = 𝑘𝑤−1. Thus any word must have multiplicity at
least 𝑘𝑤−1, and another path counting argument shows that it must in fact be equal
to 𝑘𝑤−1.
As another example, suppose all words have uniform multiplicity. If B(𝜌) were
ambiguous, and by the transitivity of the automaton, we find a word 𝑥 so that the
unfolding unf

(
B(𝜌), 𝑥

)
contains two separate traversals. But then 𝑥𝑟 has multiplicity

at least 2𝑟 , a contradiction. On the other hand, suppose the de Bruijn automaton is
unambiguous and consider all unfoldings unf

(
B(𝜌), 𝑥

)
where 𝑥 ∈ Σ𝑛, 𝑛 ≥ 𝑤 − 1.

Since B(𝜌) is 𝑘-regular, there are altogether 𝑘𝑛−𝑤+1 traversals from (𝑝, 0) to (𝑝, 𝑛)
for any state 𝑝 of B(𝜌).
Multiplicity can also be expressed in terms of a monoid homomorphism 𝜇 : Σ∗ →
N𝑄×𝑄 that maps finite words into 𝑄 by 𝑄 matrices of nonnegative integers. Here
𝜇(𝑥) (𝑝, 𝑞) is the number of computations carrying label 𝑥 with source 𝑝 and target 𝑞.
In a semiautomata, the standard definition of multiplicity is then simply the 1-norm of
these matrices. The multiplicity matrices afford an alternative way to develop many
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of the basic results about shift morphisms, see [24]. In particular, it follows from the
Frobenius-Perron theorem that the matrix semigroup generated by 𝜇(𝑎), 𝑎 ∈ Σ, is
finite iff it fails to contain the null matrix, i.e., when the morphism is surjective. The
matrices of minimal rank form an ideal in the semigroup, that provides information
about the number of predecessors of configurations.
Turning to shift spaces with a surjective LCA, the number of predecessors of any
word in Σ𝜁 is obviously bounded by 𝑘𝑤−1, but my well be smaller. To analyze the
number of predecessors, recall that for any nondeterministic finite state machine A
on state set𝑄 we can think of the transition relation as a right semigroup action on the
ambient set 𝔓(𝑄). On this view, the classical Rabin-Scott determinization method
in [41] produces the closure of the initial state set under this action. Similarly, the
kernel automaton of A is obtained by instead closing the set { {𝑝} | 𝑝 ∈ 𝑄 }. We
may safely assume that the potential sink ∅ is removed from the kernel automaton,
so we are dealing with a partial deterministic automaton. Thus, computations in the
kernel automaton keep track of all computations of A that start at any single state.
Now suppose 𝜌 is a surjective cellular automaton and B(𝜌) the associated semiau-
tomaton. With a view towards determining reversibility, i.e., deciding whether the
global map in injective, it is natural to consider 𝑊m (𝜌), the least number of prede-
cessors of any word 𝑋 ∈ Σ𝜁 . In other words, 𝑊m (𝜌) is the smallest possible number
of traversals in any unfolding unf

(
B(𝜌), 𝑋

)
. Checking whether 𝑊m (𝜌) = 1 is easily

translated into a purely graph-theoretic condition on the diagram of the Cartesian
product automaton B(𝜌) ×B(𝜌). Now consider the non-transient part of the product
automaton, i.e., the subgraph induced by all points that lie on a two-way infinite path.
Since B(𝜌) is transitive, the diagonal Δ = { (𝑥, 𝑥) | 𝑥 ∈ B(𝜌) } must lie in a single
strongly connected component. Moreover, that strongly connected component must
be Δ itself, and there cannot be any other non-trivial strongly connected components.
It follows from our previous remarks about the multiplicity of extensions of a word
that the kernel automaton of A has a terminal strongly connected component that
consist of sets of equal cardinality. The subautomaton induced by this strongly
connected component is the right Welch automaton of 𝜌 and we can define 𝑊r (𝜌)
to be the cardinality of the state sets of this automaton. Analogously we can define
the left Welch automaton by starting with reversal Aop of A; 𝑊l (𝜌) is defined
analogously. The diagrams of these automata for (4, 2) CA number 7230 can be seen
in figure 4.
One can show that 𝑊l (𝜌)𝑊m (𝜌)𝑊r (𝜌) is 𝑘𝑤−1, as a consequence rule 𝜌 is 𝜁-
injective iff 𝑊l (𝜌)𝑊r (𝜌) = 𝑘𝑤−1. Of course, this method requires calculation of the
Welch automata and is inefficient, see section 3.3 for a better approach. On the other
hand, paths in the Welch automata contain all the information needed to determine
how long a finite word 𝑤 needs to be in order for the unfolding of 𝑤 to contain a
bottleneck, a place where all the computations pass through the same node in B(𝜌).
But then we can effectively construct an inverse cellular automaton, essentially by
mapping 𝑤 to, say, the first symbol in the bottleneck; some slight optimizations are
possible. For example, the (4, 2) LCA number 3915 has a (4, 2)-inverse with rule
number 11535.
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Fig. 4 The semiautomata and Welch automata associated with the (4, 2) CA number 7230.

The characterization of basic properties of the global map for 𝜁-words is fairly
straightforward, but becomes more involved for 𝜔-words: The existence of one-
sided boundary conditions removes symmetry. For finite words the situation changes
again since the answer now typically depends on the length of the words in question.
The approach discussed in the next section deals with all these problems.

3 Decision Procedures and Automaticity

Decision algorithms for the local theory of linear cellular automata are based on
first-order structures consisting of a space of words, together with a suitable global
map as defined in section 2.2. We will refer to these structures as phase space. In this
section we will outline the general approach to handling decision problems, but we
point out that more information can be gleaned from the automata that arise during
the execution of the algorithm, see section 3.3.

3.1 The First-Order Theory

The following classical result is the key for the decision method for the local theory
of cellular automata. Suppose we have some relational first-order language 𝐿 =

L(𝑅1, . . . , 𝑅ℓ) and a first-order structure 𝔄 = ⟨ 𝐴; 𝑅1, . . . , 𝑅ℓ ⟩ where 𝐴 ⊆ Σ∗ is a
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regular language and 𝑅𝑖 is a synchronous relation on 𝐴 of the same arity as relation
symbol 𝑅𝑖 . We refer to such a structure as being automatic or synchronous. The goal
is to determine whether a arbitrary prenex-normal form formula

Φ = 𝑄1𝑥1 𝑄2𝑥2 . . . 𝑄𝑘𝑥𝑘 𝜙(𝑥1, . . . , 𝑥𝑘)

is valid over 𝔄. Here the 𝑄𝑖 denote existential or universal quantifiers and the matrix
𝜙 is quantifier-free; we always allow for equality.

Theorem 4 The first-order theory of an automatic structure is decidable.

This follows readily from standard results in automata theory, see [30, 29, 28, 53, 52].
We refer the reader to the references for technical details and will here only comment
on the salient parts of the decision algorithm and then limit our discussion to the
context of cellular automata. A few more details can also be found in section 3.3.1.
Given the matrix of the formula, we can effectively construct a 𝑘-track transducer
A𝜙 with the property that

L(A𝜙) = { 𝑢1:𝑢2: . . . :𝑢𝑘 ∈ (Σ𝑘)∗ | 𝔄 |= 𝜙(𝑢1, . . . , 𝑢𝑘) }

where 𝑢1:𝑢2: . . . :𝑢𝑘 denotes a word over the product alphabet Σ𝑘 , 𝑢𝑖 represents
the 𝑖th track of the word. The machine A𝜙 is built from the given transducers for
the relations 𝑅𝑖 and equality, using standard Boolean operations. To determine the
validity of Φ, we successively remove all the quantifiers, starting at the last quantifier
𝑄𝑘 and working to the left. Existential quantifiers are handled by simply removing
the corresponding track. Universal quantifiers, on the other hand, are converted into
an existential one plus two negations, ∀ ≡ ¬∃¬. Note that determinization is usually
needed to handle the first negation, but the subsequence removal of a track is likely to
reintroduce nondeterminism, so the second negation again requires determinization.
Once all the quantifiers have been removed, we obtain a machine AΨ, really a
unlabeled directed graph that we interpret as a machine over some one-symbol tally
alphabet. Thus, the final query is a test for emptiness of the finite state machine AΦ:
we have 𝔄 |= Φ if, and only if, L(AΦ) ≠ ∅. Once the machine has been constructed,
the corresponding test is linear time.
Focusing on cellular automata, the automatic structures in question take the following
shape. There are three cases to consider depending on whether the words in question
are finite, 𝜔-infinite or 𝜁-infinite. The same general framework applies, but the
automata in question require substantial modifications that we will comment on in
section 3.2. The three kinds of structures are

ℭ∗
𝜌 = ⟨Σ∗, 𝜌∗ ⟩ ℭ𝜔

𝜌 = ⟨Σ𝜔 , 𝜌𝜔 ⟩ ℭ
𝜁
𝜌 =

〈
Σ𝜁 , 𝜌𝜁

〉
As already mentioned, for technical reasons, it is customary in this context to think
of the map as a binary relation which we will denote by �. Clearly, any function can
be expressed in terms of the corresponding relation, but the latter approach makes



Linear Cellular Automata and Automaticity 15

it somewhat easier to handle logical concepts. For example, while it is convenient
to allow terms of the form 𝑓 ( 𝑓 (𝑥)) = 𝑦, there is a hidden existential quantifier
that becomes visible in the relational setting: ∃ 𝑧 (𝑥 � 𝑧 ∧ 𝑧 � 𝑦). In the case of
finite words, it is also of interest to study the finite substructures ℭ

(𝑛)
𝜌 obtained by

restriction to Σ𝑛. Hence, the language used to describe properties of these structures
is the first-order language L(�) with equality, but see section 3.3.2 for natural
generalizations.
To organize the conversion algorithm from formula to automaton is convenient to
assume that the matrix is given in disjunctive normal form, i.e., a disjunction of
conjunctions of basic atomic formulae 𝑥 � 𝑦 or 𝑥 = 𝑦, plus their negations. Observe
that the negation ¬(𝑥 � 𝑦) is equivalent to ∃ 𝑧 (𝑥 � 𝑧 ∧ 𝑧 ≠ 𝑦) and can thus be
eliminated, at the cost of more existential quantifiers before the matrix. Unnegated
equalities 𝑥 = 𝑦 can often be eliminated in the construction of the automaton A𝜙

by identifying tracks related to �-terms in the same disjunct. At any rate, in each
disjunct we are left with conjuncts of the form 𝑥 � 𝑦, 𝑥 = 𝑦 or 𝑥 ≠ 𝑦 which can
be handled by a standard product machine construction. Assembling the disjuncts is
easy as long as we use nondeterminism, the disjoint sum of the components works
fine.
Since the global map is length-preserving, the discussion for finite words is usually
rephrased slightly. As already mentioned, individual finite structures ℭ (𝑛)

𝜌 per se are
of little interest, instead one is trying to determine the so-called spectrum of the
property in question. Given any first order sentence Φ, we define its spectrum to be

spec(Φ) = { 𝑛 ∈ N+ | ℭ (𝑛)
𝜌 |= Φ }

Given our convention that removal of the quantifiers produces an automaton over
a tally alphabet, AΦ recognizes the spectrum of Φ, where the natural numbers are
written in unary. Minimization of AΦ produces a lasso-shaped machine, so that the
spectrum is always ultimately periodic.

Theorem 5 Any sentence in the logic L(�) has ultimately periodic spectrum. A
corresponding representation is effectively computable.

In other words, we can effectively compute finite sets 𝐴, 𝐵 ⊆ N such that the spectrum
has the form 𝐴 ∪ (𝐵 + 𝑡 + 𝑝N). Even though the individual structures ℭ

(𝑛)
𝜌 are all

trivially decidable even for stronger logics such as second order or transitive closure
logic, there is no hope for any sort of analogue to the last theorem. For example, it
is Π1-complete to determine uniformly in 𝑛 whether ℭ (𝑛)

𝜌 contains a unique fixed
point that is reachable from everywhere [48].

As an example, consider the existence of a proper 3-cycle in ℭ
(𝑛)
𝜌 . The elementary

cellular automata with open global map are rules number 60, 90, 102, 105, 150, 153,
165, 195. The spectra of the 3-cycle property for all these rules are periodic and the
periods can be found in the table below. However, we can extract more information
from the automata that appear during the construction. In particular we can compute



16 Klaus Sutner

the growth functions of the automata that recognizes all the triples that form a proper
3-cycle. From there one can determine the actual number of 3-cycles which numbers
may be constant, or change periodically themselves.

period rules cycle count
3 60, 102, 153, 195 1
5 90, 165 5, 5, 20
5 150 10, 20

20 105 20
More generally, counting the number of occurrences of particular subgraphs in phase
space can be handled in a similar manner, though it may be very difficult to handle the
growth functions involved. For example, rule 73 has the very simple spectrum 7+N,
but the first few non-zero cycle counts are 7, 16, 18, 20, 44, 68, 65, 119, 250, 368, . . .
and appear to have no reasonable description. Algorithmic details can be found in
section 3.3.

3.2 Infinite Words

The automata-based decision algorithm for automatic structures applies, as a matter
of principle, to phase spaces on infinite words. The only difference is that we now
need to employ 𝜔-transducers or 𝜁-transducers, depending on the space in question.
We emphasize the qualifier “in principle,” since, as a practical matter, the algorithms
manipulating these machines often have substantially worse performance. Of course,
this is not a new phenomenon, state space explosion has been the bane of automata-
based model checking methods for quite some time [11, 10].

3.2.1 𝝎-Automaticity

We first consider one-sided shift spaces where we can think of the global map as
being given by a synchronous 𝜔-transducer. For simplicity we will only consider 0-
boundary conditions and odd widths, no substantial changes occur in the general case.
The corresponding synchronous transducer is easily obtained from the standard de
Bruijn transducer T (𝜌) by restricting the initial states to be of the form 0𝑟Σ𝑟 where 𝑟
is the radius of the local map. The acceptance condition for T (𝜌) is straightforward:
all states are final, and we simply require an infinite path starting at one of the
initial states. By construction, T (𝜌) is deterministic, so the one-step relation �
is deterministic 𝜔-regular. The same holds for compound relations built from �
using only conjunctions and disjunctions; alas, negation cannot be handled this way.
Similar comments apply to the basic acceptor B(𝜌), except that this automaton fails
to be deterministic in general; it always is a multi-entry automaton.
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Finding a reasonable definition of regularity for 𝜔-languages in general requires
substantially more effort. As suggested by Büchi, one should keep a finite, nonde-
terministic transition system ⟨𝑄, Σ, 𝜏 ⟩ in place and modify the standard acceptance
condition as follows. Suppose we have a collection of initial and final states 𝐼, 𝐹 ⊆ 𝑄

as before in the finite word case. Given an 𝜔-word 𝑋 , a run of A on 𝑋 is an infinite
sequence 𝜋 = (𝑝𝑖)𝑖∈Z of states in 𝑄 such that 𝜏(𝑝𝑖 , 𝑥𝑖 , 𝑝𝑖+1) for all 𝑖 ∈ N. Define
the recurrent set of the run to be rec(𝜋) = { 𝑝 ∈ 𝑄 | ∃∞ 𝑖 ∈ N (𝑝𝑖 = 𝑝) }, the col-
lection of all states the appear infinitely often in the run labeled 𝑋 . Then A is said
to accept 𝑋 if there is some run 𝜋 such that rec(𝜋) ∩ 𝐹 ≠ ∅. A language 𝑊 ⊆ Σ𝜔

is 𝜔-regular if it is accepted by an Büchi automaton. From the definition of a Büchi
automaton it follows immediately that there is a close link between regular languages
and 𝜔-regular languages: the latter can always be characterized as the collection of
𝜔-languages of the form

𝑊 =
⋃
𝑖≤𝑛

𝑈𝑖𝑉
𝜔
𝑖

where the 𝑈𝑖 , 𝑉𝑖 ⊆ Σ+ are all regular. The notation 𝑉𝜔 indicates all 𝜔-words that
can be obtained by concatenating together infinitely many non-empty words from𝑉 .
There are several essential differences between ordinary word automata and Büchi
automata. A major application of word automata is to use fast acceptance testing
for pattern matching. On the other hand, acceptance testing of 𝜔-words is algo-
rithmically meaningless unless the word in question has a finitary description. For
ultimately period words acceptance is easily decidable, but becomes undecidable
for computable words, and even primitive recursive ones. Instead, the key decision
problem for Büchi automata in an algorithmic context is whether they accept any
string, the so-called Emptiness problem. The problem is solvable in time linear the
size of the given automaton. Another major issue is the lack of direct analogue to
Rabin-Scott determinization: some 𝜔-regular languages can only be accepted by
nondeterministic Büchi automata, a typical example being the language {𝑎, 𝑏} 𝑎𝜔

of all words containing on finitely many 𝑎s. One refers to the languages that can
be recognized by a deterministic Büchi automaton as a deterministic 𝜔-regular lan-
guage. These turn out to be exactly the adherences of ordinary regular languages:
they consist of 𝜔-words that have infinitely many finite prefixes in a given regular
language. Note the 𝜔-languages 𝜌𝜔 (Σ𝜔) naturally are the adherences of the regular
language of all finite prefixes of 𝜔-words in the range of 𝜌𝜔 . Deterministic 𝜔-regular
languages are closed under union and intersection, but not under complementation.
The proof that 𝜔-regular languages in general form a Boolean algebra is quite diffi-
cult. In fact, the first practical complementation algorithm was developed by Safra
in [42], almost three decades after the introduction of Büchi automata.
The definition carries over to synchronous 𝜔-transductions. Ignoring algorithmic
complexity issues for the time being, we can define an 𝜔-automatic structure to be
a first-order structure 𝔄 = ⟨ 𝐴; 𝑅1, . . . , 𝑅𝑛 ⟩ where 𝐴 ⊆ ΣN is an 𝜔-regular set and
all the relations 𝑅𝑖 ⊆ (Σ𝜔)𝑘𝑖 are 𝜔-regular transductions.

Theorem 6 The first-order theory of 𝜔-automatic structures is decidable.
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On the face of it, it may seem surprising that finite state machines should be sufficient
to handle first-order logic over uncountable spaces like Σ𝜔 . Ultimately, the argument
goes through, because first-order logic is too weak to express properties that cannot
already be determined in a far less complicated substructure. Specifically, given a
first-order structure 𝔄, a substructure 𝔅 is elementary if for any first-order sentence
𝜙(b) with parameters b in 𝔅 is valid in 𝔄 iff it is valid in 𝔅. In other words, from a
strictly first-order perspective, there is no difference between the two structures. In
particular the automatic structures ℭ𝜔

𝜌 have an elementary, countable substructure
that ultimately serves as the ambient background for decision algorithm.

Theorem 7 Ultimately periodic 𝜔-words form an elementary substructure of ℭ𝜔
𝜌 .

To see why the theorem holds, consider ultimately periodic 𝜔-words. In order to
apply the Tarski-Vaught test, see [9], it suffices to consider a first-order formula
∃ 𝑥 𝜑(𝑥, b) where all the parameters are ultimately periodic. For simplicity, assume
there is only a single parameter 𝑏, and let ℭ𝜔

𝜌 |= ∃ 𝑥 𝜑(𝑥, 𝑏).
By automaticity, we may assume we have a two-track Büchi automaton A that
accepts some word 𝑥:𝑏. By the definition of acceptance for Büchi automata, there is
some initial state 𝑝, a final state 𝑞 and a strongly connected component 𝐶, 𝑞 ∈ 𝐶,
in the automaton such that an accepting computation of A starts at 𝑝, ultimately
stays in 𝐶 and touches 𝑞 infinitely often. Since 𝑏 is ultimately periodic, say, with
primitive period 𝑢 ∈ Σ∗, there must be a conjugate of some power 𝑢𝑡 of 𝑢 that labels
the second track in A in a cycle anchored at 𝑞. We can read off a corresponding
label in the first track to produce an ultimately periodic witness 𝑥 that demonstrates
that ∃ 𝑥 𝜑(𝑥, 𝑏 also holds over the substructure.
The last result fails for the type of “finite” configurations 𝑢0𝜔 often employed in
computability arguments, even if we insist that the rule is quiescent in the sense that
0𝜔 is a fixed point. On the other hand, it is noteworthy that the theorem does hold for
the substructure of computable words. In this case, the parameter 𝑏 in the existential
formula in the proof is a computable function and there is no reason for for the
computation to ever settle down on a fixed cycle in a strongly connected component.
However, one can use a more involved argument to show that it is still possible to
find a computable witness, see [50]. Alas, the witness can no longer be effectively
determined from an index for the parameter.
Returning to the automata associated in particular with cellular automata, the basic
machines that check for weak 𝑘-cycles are still rudimentary. The qualifier “weak”
here is meant to indicate that no inequality tests are involved, so that 𝑘 may not be
minimal. Including these inequality conditions requires the separation of initial and
final states, and uses multiple copies of the weak machines arranged along a Boolean
lattice. This structure is made necessary by the fact that inequality conditions between
different pairs of tracks can be satisfied in many different sequences. Figure 5 shows
the structure of the machine for testing proper 4-cycles.
Similar comments apply for paths of length 𝑘 or the existence of 𝑘 predecessors.
The machines all have a fairly straightforward structure and the acceptance condition
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x1 6= x2 x1 6= x3

x1 6= x3 x1 6= x2

Fig. 5 A 4-track transducer checking for proper 4-cycles. The initial states are located in the bottom
copy of T, and the final states, in the top.

is not substantially different from the finite case: initial state play the same role as
before, and for final states we have to make sure that at least one is touched infinitely
often. For example, it is easy to construct ultimately periodic witnesses, in case they
exist at all. Ultimately it is the handling of negation in the removal of universal
quantifiers that produce truly complicated machines.

3.2.2 𝜻-Automaticity

To handle classical, two-sided shift spaces in a similar manner one needs to develop
a notion of regularity for 𝜁-languages. Naturally one would like to exploit the ma-
chinery of the 𝜔-automata from the last section to this end. To handle words that
extend infinitely far to the left, first define co-𝜔-words as maps 𝑋 : Z− → Σ , where
Z− denotes the negative integers. These words can be concatenated with 𝜔-words 𝑌
in the obvious fashion to produce 𝜁-words 𝑋𝑌 : Z → Σ . Any co-𝜔-word 𝑋 can be
converted into an 𝜔-word 𝑋op by setting 𝑋op : N→ Σ by 𝑋op (𝑖) = 𝑋 (−𝑖 − 1); the
same approach works in the opposite direction and we have (𝑋op)op = 𝑋 .
Now suppose we have a transition system together with initial and final state sets,
A = ⟨𝑄, Σ, 𝜏; 𝐼, 𝐹 ⟩ . In analogy to the 𝜔-case, define the negatively recurrent set
of a run to be rec− (𝜋) = { 𝑝 ∈ 𝑄 | ∃∞ 𝑖 ∈ N (𝑝−𝑖 = 𝑝) }. We can then define a
𝜁-Büchi automaton to be the same data structure as a Büchi automaton, but with the
acceptance condition modified to require rec− (𝜋) ∩ 𝐼 ≠ ∅ as well as rec(𝜋) ∩𝐹 ≠ ∅.
A language is 𝜁-regular if it is accepted by a 𝜁-Büchi automaton; in a similar manner
we can define synchronous 𝜁-transductions. One can check that this definition yields
a Boolean algebra of languages and that decomposition results similar to the 𝜔-case
obtain: a language 𝑊 ⊆ Σ𝜁 is 𝜁-regular if, and only if, it is of the form

𝑊 =
⋃(

𝑋𝑖

)𝜔
𝑌𝑖 𝑍

𝜔
𝑖

=
⋃

𝑈
op
𝑖
𝑉𝑖
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where the unions are finite, 𝑋𝑖 , 𝑌𝑖 and 𝑍𝑖 are regular subsets of Σ+, and 𝑈𝑖 , 𝑉𝑖 are
𝜔-regular languages.
It is clear from the definition that we can decompose a 𝜁-Büchi automaton into a
collection of pairs of Büchi automata of the form A𝑝,− = ⟨𝑄, Σ, 𝜏; 𝐼, {𝑝} ⟩ and
A𝑝,+ = ⟨𝑄, Σ, 𝜏; {𝑝} , 𝐹 ⟩ where 𝑝 ranges over 𝑄. We may assume that all states
in 𝜁-Büchi automaton are non-transient and lie on paths from nontrivial strongly
connected components containing initial and final states, respectively. Also, it suffices
to choose states 𝑝 so that every computation passes through at least one such point.
The basic acceptorB(𝜌) and transducer T (𝜌) in figure 2 fit this framework simply by
considering all states to be initial and final, the usual convention for semiautomata. In
this case, acceptance simply means there is a two-way infinite run with the appropriate
label and shift invariance holds. 𝜁-Büchi automata make it possible to generalize the
decidability result from the 𝜔-case, but note that, in the context of shift spaces, one is
actually interested in words modulo a shift, there is no artificial coordinate system as
in the split-and-glue method just outlined. In other words, our basic machines accept
𝑋 if, and only if, they accept 𝜎(𝑋). This naturally leads to the question of whether
shift-invariant 𝜁-languages can be handled by special 𝜁-automata. To shed light on
this question, define a 𝜁-Büchi automaton to be 𝜁-unambiguous if the automaton has
at most one accepting run on every input. Figure 6 shows an ambiguous as well as
an unambiguous transducer for the property of almost-equality, see section 3.3.2 for
an application. Unambiguous automata can be considered to be a first step towards
deterministic automata; in the context of 𝜁-Büchi automata they provide a weaker
version of a full determinization algorithm. It is shown in [39] that for shift-invariant
𝜁-regular languages there always is a 𝜁-unambiguous automaton that accepts the
language.

a/a a/a

a/a ∗ a/a

a/b a/b

a/a ∗ a/a

a/b

Fig. 6 A 𝜁 -transducer automaton that recognizes all the almost-equal relation on Σ𝜁 and its
unambiguous counterpart. Here 𝑎 ≠ 𝑏 are supposed to be arbitrary but distinct letters in Σ and ∗
denotes all possible labels.

Ignoring all questions of computational complexity, the fundamental decidability
result carries over from 𝜔-automatic structures to 𝜁-automatic ones.

Theorem 8 The first-order theory of 𝜁-automatic structures is decidable.



Linear Cellular Automata and Automaticity 21

One might suspect that, as before for 𝜔-automaticity, the use of finite state machines
in the decision algorithm establishes a simple limitation on the expressiveness of
the logic that can be explained in terms of a suitable elementary substructure of the
uncountable space. In this case, we wind up with a class of 𝜁-words that are known
as backgrounds or ultimately periodic. These words take the form 𝜔𝑢 𝑣 𝑤𝜔 where
𝑢, 𝑣, 𝑤 ∈ Σ∗. Backgrounds are a natural generalization of both locally finite words,
i.e., words of the form 𝜔0 𝑣 0𝜔 and periodic words 𝜔𝑢𝜔 .

Theorem 9 Ultimately periodic 𝜁-words form an elementary substructure of ℭ𝜁
𝜌 .

Recall Cook’s proof of the computational universality of elementary cellular au-
tomaton number 110, see [12]. The construction relies on the orbit of backgrounds
rather than finite configurations as in standard computability arguments. In fact,
backgrounds are used to simulate cyclic tag systems using rule 110. By contrast,
the reachability problem for ECA 110 is trivially decidable for finite and one-way
infinite words, but it is r.e.-complete for backgrounds. In light of the substructure
theorem, the choice of configurations in the proof seems fairly natural.

3.3 Algorithmic Issues

The choice of first-order logic as a query language avoids all issues of undecidability,
but there still is a price to pay in terms of computational complexity. Indeed, feasibil-
ity problems become dominant in the infinite case and in particular for 𝜁-automata.
In this section we comment on various methods to combat algorithmic problems and
obtain actual results at least under limited circumstances.

3.3.1 Machine Constructions

The basic transducers T (𝜌) have size linear in the size of the rule table for 𝜌, and we
have obvious machines for equality and inequality. All the automata constructions
involved in the algorithms are justified by the standard closure properties of regular
languages: Boolean operations handle logical conjunction, disjunction and negation;
closure under homomorphisms and inverse homomorphisms is used for embeddings
and projections that address the need to deal with product alphabets of the form
Σ𝑘 , corresponding to formulae with 𝑘 free variables. The exponential size of these
alphabets requires particular attention, it is often mandatory to find ways to rearrange
the given formula into logically equivalent forms, typically not in prenex-normal
form, that make it possible to keep the number of tracks reasonably small. As to
the Boolean operations, union can be handled in linear time using nondeterminism.
Intersections are typically quadratic and rely on product machine constructions.
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Lastly, negation in general admits no polynomial time bounds; in particular for
infinite words the cost may even be super-exponential.
Two key components in the construction of transducers representing compound
logical formulae are embeddings and projections. More precisely, the embedding
operation takes the form emb(𝑛)

t : 𝑚-track −→ 𝑛-track where 𝑚 ≤ 𝑛, t = 𝑡1, . . . , 𝑡𝑚,
𝑡𝑖 ∈ [𝑛], all distinct. Thus emb(𝑛)

t (A (𝑚) ) = B (𝑛) means that track 𝑖 of A (𝑚) is
identified with track 𝑡𝑖 in B (𝑛) . The other tracks are free, i.e., all possible transitions
are included. While this operation does not affect the state set, it can cause poten-
tially very large alphabets and, correspondingly, large numbers of transitions in the
embedded automaton.
The natural dual to embeddings are projections prj(𝑛)t : 𝑛-track −→ 𝑚-track where
t = 𝑡1, . . . , 𝑡𝑛′ , 𝑛′ ≤ 𝑛, 𝑡𝑖 ∈ [𝑛], all distinct, 𝑚 = 𝑛 − 𝑛′. Here prj(𝑛)t (A (𝑛) ) = B (𝑚)

means that, for all transitions in A (𝑛) , the tracks 𝑡𝑖 of the transition labels have been
erased, producing B𝑚. Again, the state set is unaffected but the number of transitions
shrinks. The special case 𝑛 = 𝑛′ is important. As already pointed out, the removal of
all tracks results in an unlabeled digraph with a collection of source and target nodes.
It is convenient to adopt the convention that the edges are labeled by a special tally
symbol, so that the language of the resulting acceptor can naturally be considered
as a subset of N, written in unary. The formula is valid if, and only if, this set is
non-empty. As a practical matter, if the leading quantifier in the original formula is
universal, one always avoids the standard conversion to an existential quantifier plus
two negations and simply negates the question, leaving an existential question and a
single negation.
In all three scenarios, the basic transducers for the one-step relation or equality are
easily handled. Using embeddings and product constructions one can then build up
machines that handle the weak versions of 𝑘-cycles, 𝑘-paths and 𝑘-predecessors.
Introducing inequality constraints is a first step towards more complicated machines,
and the removal of universal quantifiers exacerbates the situation. As an example,
consider the question of the existence of proper 3-cycles in phase space. The straight-
forward way to express the assertion that such a cycle exists in L(�) is the following
existential formula.

∃ 𝑥, 𝑦, 𝑧
(
𝑥 � 𝑦 ∧ 𝑦 � 𝑧 ∧ 𝑧 � 𝑥 ∧ 𝑥 ≠ 𝑦 ∧ 𝑥 ≠ 𝑧 ∧ 𝑦 ≠ 𝑧

)
A moment’s thought reveals that this can be rewritten as

∃ 𝑥, 𝑦, 𝑧
(
𝑥 � 𝑦 ∧ 𝑦 � 𝑧 ∧ 𝑧 � 𝑥 ∧ 𝑥 ≠ 𝑦

)
since � is functional. As a general principle, prenex normal form makes it easy
to describe the algorithm but is computationally inefficient. It is preferable to use
equivalent formulae that make it possible to project away tracks corresponding to
existential quantifiers as early as possible. In this case, it is preferable to rewrite the
last formula as
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∃ 𝑥, 𝑦
(
𝑥 � 𝑦 ∧ ∃ 𝑧 (𝑦 � 𝑧 ∧ 𝑧 � 𝑥 ∧ 𝑥 ≠ 𝑦)

)
to take a advantage of the projection. The construction of the machine then takes the
form

A′ = prj(3)3
(
emb(3)

1,2 (T𝜌) × emb(3)
2,3 (T𝜌) × emb(3)

3,1 (T𝜌)
)

A = prj(0)1,2
(
prj(3)3

(
A′) ×U (2) )

where U (2) is a two-track machine checking for inequality.
Another example where the use of prenex-normal form is to be avoided is iteration
of the global map. In general, given any synchronous, length-preserving map 𝑓 rep-
resented by a transducer A, The direct construction of a transducer B that represents
the 𝑘-fold iterate of the global map would rely on a product of machines obtained
by 𝑘+1-track embeddings of T𝜌, followed by projections. However, after initializing
A = emb(3)

1,2 (T𝜌) and T23 = emb(3)
2,3 (T𝜌) we can simply repeat the construction

A = emb(3)
1,2

(
prj(3)2

(
A × T23)

) )
𝑘 times and in the end return prj(3)3

(
A
)
. In all such constructions, minimization

should be applied regularly to keep state complexities low.
While the general decision algorithm ultimately determines a yes/no answer, it is
often useful to analyze the machines that are constructed during the execution of
the algorithm directly. In fact, one can often avoid an explicit construction of the
decision automaton and instead argue about machines that are logically related to
the ones that appear in the decision algorithm. As an example, consider questions
about in-degrees for finite phase spaces. We certainly can express the assertion that
every node has indegree 0 or 2 as a first-order sentence

∀ 𝑥, 𝑦 ∃ 𝑢, 𝑣 ∀ 𝑧
(
𝑦 � 𝑥 ⇒ (𝑢, 𝑣 � 𝑥 ∧ 𝑢 ≠ 𝑣) ∧ (𝑧 � 𝑥 ⇒ 𝑧 = 𝑢 ∨ 𝑧 = 𝑣)

)
The alternating quantifiers and the length of the matrix of the formula would produce
rather unwieldy automata. Instead, we can build very simple machines and reason
about the growth functions of their languages. For example, a machine that accepts
all pairs of words that are predecessors of the same word looks like

A = prj(3)3
(
emb(3)

1,3 (T𝜌) × emb(3)
2,3 (T𝜌)

)
A priori, this machine only determines a point in phase space of in-degree at least
one. However, after determinizing and minimizing A, we can easily compute the
generating function representing the growth function of A: this comes down to
solving a linear system of equations over Z[𝑧]. In the case of elementary cellular
automaton number 90 with cyclic boundary conditions, this function is 4(1+4𝑧)

1−4𝑧2 and
from there the number of pairs can be seen to be 2𝑛 (3 + (−1)𝑛). Similarly we
can determine the number of nodes with positive indegree to be 2𝑛−3 (3 − (−1)𝑛)
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and the number of quadruples associated with nodes of degree at least 4 to be
2𝑛+2 (9 + 7(−1)𝑛). A little counting argument then shows that the degree statement
from above holds in ℭ

(𝑛)
90 exactly for all odd 𝑛, and the corresponding statement for

in-degree 4 holds for all even 𝑛.
If the decision algorithm is used directly to obtain a yes/no answer, we wind up with
the Emptiness problem for 𝜁-Büchi automata, analogous to the finite and one-way
scenario.

Proposition 1 The Emptiness problem for 𝜁-Büchi automata is solvable in time
linear in the size of the automaton.

To see why, note that we can use, say, Tarjan’s algorithm for strongly connected
components to make sure that the automaton is non-transient. Next, we can check
that there is at least one state 𝑝 on a path from some nontrivial strongly connected
component 𝐶− to another 𝐶+ so that 𝐶− contains an initial state and 𝐶+ contains a
final state. All of this can be handled with standard graph algorithms in linear time.
Of course, the real algorithmic challenge occurs in the construction of the 𝜁-Büchi
automaton in the first place. In fact, even for plain Büchi automata that are used in
decision procedures for, say, Presburger arithmetic, algorithmic issues are dominant.
As a consequence, the literature offers a number of alternative kinds of 𝜔-automata:
Rabin automata, Muller automata, Streett automata and so on, see Kupferman’s
chapter in [10]. The key obstruction is expressed in the next proposition.

Proposition 2 Determinization of 𝜁-Büchi automata is super-exponential time in
the worst case.

More precisely, there are examples of 𝜔-regular languages with an 𝑛 state Büchi
automaton whose complement requires a Büchi automaton of size (𝑛−1)!, much
worse that the plain exponential blowup in the finite word case. At any rate, the
determinization of a Büchi automaton produces a Rabin or a Muller automaton,
that can be converted back into an equivalent Büchi automaton. Recall, though, that
the determinization of a 𝜁-Büchi automaton requires its decomposition into linearly
many pairs of Büchi automata, each of which needs to be determinized separately.
As a result, one should expect successful determinization only for reasonably small
machines. Using unambiguous machines as introduced in section 3.2.2 can also
help control the size of machines, at least in some cases. Still, the problem of state
explosion imposes substantial bounds on actual computations.

3.3.2 Automatic Extensions

Another way to avoid unduly large machines is to change the underlying language
itself. To wit, we can add synchronous relations to the language L(�, 𝑅1, . . . , 𝑅ℓ)
and accordingly provide suitable basic transducers that recognize these relations.
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Since the structure ⟨𝑊 ; �, 𝑅1, . . . , 𝑅ℓ ⟩ is still automatic, the algorithms carry over
directly. Automatic extensions of this kind are particularly useful when the relations
fail to be first-order definable over the basic structure ⟨𝑊 ; � ⟩ , but they also may be
algorithmically advantageous if the predicate in question is already definable, simply
because a there is no need to recompute the corresponding machines from scratch in
each run of the algorithm. Perhaps the most important examples of such extensions
are related to modified notions of equality on infinite words. For 𝜁-words 𝑋 and 𝑌 ,
define 𝑋 =𝐿 𝑌 to mean that ∃ 𝑛∀ 𝑖 ≥ 𝑛 (𝑥−𝑖 = 𝑦−𝑖). Similarly, 𝑋 =𝑅 𝑌 means that
∃ 𝑛∀ 𝑖 ≥ 𝑛 (𝑥𝑖 = 𝑦𝑖) and 𝑋

∗
= 𝑌 if 𝑋 =𝐿 𝑌 ∧ 𝑌 =𝐿 𝑋 . Thus 𝑋

∗
= 𝑌 expresses the fact

that 𝑋 are almost equal, they differ in at most finitely many places. These predicates
are easily 𝜁-automatic, for example, figure 6 shows a 2-track 𝜁-Büchi automaton
recognizing the almost-equal relation. Hence we can work in the extended structure
ℭ𝜌 = ⟨ΣZ,�,

∗
=,=𝐿 , =𝑅 ⟩.

It was shown by Hedlund that the global map over Σ𝜁 is surjective if, and only if,
the following holds:

∀ 𝑥, 𝑦, 𝑧
(
𝑥 � 𝑧 ∧ 𝑦 � 𝑧 ∧ 𝑥

∗
= 𝑦 ⇒ 𝑥 = 𝑦

)
In a similar vein, openness of the global map in the topological sense is equivalent
to the universal formula

∀ 𝑥, 𝑦, 𝑧
(
𝑥 � 𝑧 ∧ 𝑦 � 𝑧 ∧ (𝑥 =𝐿 𝑦 ∨ 𝑥 =𝑅 𝑦) ⇒ 𝑥 = 𝑦

)
Hence, in the presence of our additional predicates, surjectivity is expressed by a Π1
statement, as opposed to the usual Π2 statement. Negation produces a Σ1 formula, the
ideal input for the decision algorithm. Openness is even more complicated to express
directly; again by Hedlund, it is equivalent to the assertion that the global may is 𝑘-to-
one for some fixed 𝑘 . Since there are only boundedly many choices for 𝑘 there is a first-
order formula for openness, but it is hopelessly large. Another interesting extension
is the shift operator (except in fixed-boundary condition scenario). For example,
consider the additive elementary cellular automata number 90 and 150. Both are open
and non-injective over 2𝜁 and their kernel of dimension is 2. Their non-injectivity
spectrum isN and 3N, respectively. In the presence of a shift predicate we can further
express the assertion that there are two distinct, non-constant predecessors with
spatial period 2; this assertion produces spectra 4N and 3N. Additional distinctions
become possible if we enlarge the vocabulary by a summation operator, again in
relational form 𝑠(𝑥, 𝑦, 𝑧) iff 𝑥 + 𝑦 = 𝑧.
It is unclear how far the extension mechanism can be pushed. As a consequence of
assorted undecidability results it is clearly impossible in general to add a synchronous
reachability or orbit relation to our structures. Unfortunately, the orbit relation is
rational only in trivial cases, even a plain shift produces an irrational orbit relation.
By contrast, in the context of invertible, length-preserving transducers used in group
theory, there are some interesting examples of rational orbit relations [4]. This is
somewhat surprising, since the transductions in the context of group theory carry
state whereas cellular automata operate in a uniform fashion. It seems that the ability
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of cellular automata to propagate information in a spatial way causes insurmountable
obstacles.
With a few towards feasible algorithms it is often useful to analyzed the critical
properties of the machines in question “by hand,” in order to find computational
shortcuts. As an example, the tests for surjectivity, openness and injective that are
based on the direct application of the general decision algorithm are far from optimal.
However, a moment’s thought reveals the only way the whole surjectivity implication
can hold is when the strongly connected component containing the diagonal in the
square of B(𝜌) consists of the diagonal alone, the algorithm proposed in [50] that
runs in time quadratic in the size of the rule table. Similar comments apply to the
test for openess and injectivity.

4 Conclusion

Interpreting linear cellular automata as synchronous transducers over various sets
of words makes it possible to apply the fairly well-developed theory of regular
languages and rational transductions to the study of these cellular automata. In
particular we obtain a general decision algorithm for various local properties of the
phase spaces determined by the global maps. In light of the plethora of undecidability
results around cellular automata, it is clear that the general method is necessarily
limited in scope. On the other hand, it does provide a simple, algorithmically useful
framework to discuss a variety of properties of cellular automata. Beyond outright
undecidability there is also the question of efficiency and it is currently unclear
exactly how far the methods carry. As a consequence of negation, the running time
of the general algorithm fails to be elementary, making it unlikely that the method
can be applied to complicated assertions. On the positive side, it is conceivable that
methods developed in model checking to avoid determinization could be brought
to bear on some instances of our problem, see [31]. Similarly, the use of Boolean
decision diagrams, another staple of model checking algorithms, may help to deal
with larger machines and thus enlarge the practical reach of the decision algorithm.
We can define the 𝜁-theory of a local rule 𝜌 to be the collection of all first-order
sentences in L(�) that are valid over the phase space Σ𝜁 define by the global
map defined by 𝜌𝜁 . It seems to be quite a challenge to determine all 𝜁-theories
even for a rather limited class such as elementary cellular automata. In particular
we do not know how many distinct theories there are. More generally, consider an
arbitrary local rule 𝜌 and use a formal parameter 𝑡 = ∗, 𝜔, 𝜁 to indicate the type
of phase space under consideration: Finite, 𝜔-infinite or 𝜁-infinite, with local rule
𝜌. Define the theory Th(𝜌, 𝑡) to be the collection of all sentences in L(�) valid
over the corresponding state space. To be of interest in the finite case, it should be
understood that one wants to associate each sentence with its spectrum rather than
a plain true/false value as in the infinite scenario. There are two natural ways to
organize the task of analyzing these theories. The first is to fix 𝑡 and study various
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local rules 𝜌. Alternatively, we can fix the local rule 𝜌 and study the relationship
between Th(𝜌, ∗), Th(𝜌, 𝜔) and Th(𝜌, 𝜁). For example, any 𝜔-surjective rule is
always 𝜁-surjective, but the converse is false in general. On the other hand, a rule with
infinite surjectivity spectrum is always 𝜁-surjective; an infinite surjectivity spectrum
is implied by 𝜁-injectivity, the converse fails to hold in general. Lastly, 𝜁-injectivity
implies an infinite surjectivity spectrum. On the other hand, 𝜁-injectivity does not
imply 𝜔-surjectivity; in fact, a rule is 𝜔-surjective iff all words have multiplicity
𝑘𝑤−2 in the appropriate automaton. A major challenge here is to determine whether
a classification of cellular automata based on their first-order theories is decidable:
Given two (𝑤, 𝑘) cellular automata 𝜌 and 𝜏, is Th(𝜌, 𝑡) = Th(𝜏, 𝑡)? For example,
elementary cellular automata 160 and 250, corresponding to logical conjunction
and disjunction of the two neighbors, have the same theory; in fact, the two shift
spaces are isomorphic. Since the theories themselves are decidable, the classification
problem is no worse than Π1, but decidability is far from clear.
Ultimately we would like to understand whether there is any reasonable taxonomy of
these theories in general. Any such classification would refine the usual surjective,
open, injective hierarchy, but it is far from obvious what shape this hierarchy might
take. Beyond the plain theories using only the global map relation, we can use the
extension mechanism discussed in the last section to obtain more fine-grained dis-
tinctions in some language L(�, 𝑅1, . . . , 𝑅ℓ) where the 𝑅𝑖 are synchronous but not
first-order definable in the plain language. While these questions should be expected
to be fairly difficult in general, it is conceivable that they become manageable for
restricted types of cellular automaton, such as those given by linear or affine rules
over some finite field. In a similar vein, one can ask if there are any interesting types
of cellular automata for which a stronger logical framework still remains decidable.
It seems that if one were to try to handle transitive closure logic the answer is no,
only trivial local rules could be handled. Alas, we have no proof for this assertion.
Pushing beyond the limitations of automata-based decision method, there is the
question to which degree a formal verification of properties of cellular automata
is feasible. For example, on might consider the use of a theorem prover or SMT
solver, given some plausible axiomatization of our domain. A perfect test case for
any such framework is Cook’s theorem on the universality of elementary cellular
automaton number 110. The arguments there are in a sense local, since the evolu-
tion of configurations required to simulate 2-tag systems is spacially periodic. The
required backgrounds of the form 𝜔𝑢 𝑤 𝑣𝜔 have on obvious finitary description and
might well be amenable to formal methods. On the other hand, the sheer size of the
configurations may make formal correctness arguments too challenging for currently
available methods. Needless to say, the automata-theoretic approach discussed here
is entirely insufficient for this sort of task. In a different, but closely related context, it
would be interesting to construct a similar kind of formal proof for Smith’s argument
that establishes universality of the well-known (2, 3) Turing machine suggested by
Wolfram [46].
A Mathematica package the implements most of the algorithms discussed here can
be found at https://resources.wolframcloud.com/PacletRepository/ under the name
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Automata. This implementation is meant as a proof-a-concept, a lower level language
is needed to handle instances of compelling size.
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