
1

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 1

Algorithms
A Look At Efficiency

Counting Operations:
How much work is done?

1A

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 2

Algorithms
  A computer program should be totally correct,

but it should also
  execute as quickly as possible (time-efficiency)
  use memory wisely (storage-efficiency)

  How do we compare programs (or algorithms in
general) with respect to execution time?
  various computers run at different speeds due to

different processors
  compilers optimize code before execution
  the same algorithm can be written differently

depending on the programming paradigm

2

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 3

Analyzing Algorithms

  Worst Case
  Case with maximum number of operations

  Best Case
  Case with minimum number of operations

  Average Case
  Average number of operations over all

cases.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 4

What are the operations?

Search an array for a value

public static int search(int[] x, int target)
{

for (int i = 0; i < x.length; i++)

{

if (x[i] == target) return i;

}

return -1;

}

1 2 3

4 5

6

3

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 5

Counting Operations

Let the x.length = n.

How many times is operation 1 executed?

How many times is operation 5 and 6
executed in total?

Total so far:

1

1

2

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 6

Worst Case

Worst Case: The target is not in the array.

How many times is operation 2 executed?

How many times is operation 3 executed?

How many times is operation 4 executed?

Total number of operations:

n+1

n

n

3n+3

4

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 7

Worst Case

n

number of
operations

3n+3

n
(size of array)

number of
operations

10 33
20 63
30 93

30

30
33

63

93

10 20 30

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 8

Counting Operations
Another Look

What if we counted just the comparison?

public static int search(int[] x, int target)
{

for (int i = 0; i < x.length; i++)

{

if (x[i] == target) return i;

}

return -1;

}

5

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 9

Worst Case

Worst Case: The target is not in the array.

How many times is the comparison
executed? n

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 10

Worst Case

n

number of
operations

n

n
(size of array)

number of
operations

10 10
20 20
30 30

10

10

10

20

30

10 20 30

6

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 11

Linear Algorithm

In both cases, the amount of work we do is
linearly proportional to the number of data
values in the array.

If we have n data values in the array, and we
double the size of the array, how much work
will we do searching the new array in the
worst case?

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 12

Counting Operations

In general, it doesn't matter what we count
as operations, as long as we are consistent.

If we want to compare two algorithms that
perform the same overall function, as long
as we count the same type of operations in
both, we can compare them for efficiency.

7

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 13

Best Case

How many comparisons are necessary in
the best case for an array of n values?

n

number of
operations

1

n
(size of array)

number of
operations

10 1
20 1
30 1

1

10 20 30

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 14

Average Case

How many comparisons are necessary in
the average case for an array of n values
(assuming the target is in the array)?

1+ 2 + ... + (n-1) + n

n

8

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 15

Average Case

n

number of
operations

(n+1)/2

n
(size of array)

number of
operations

10 5.5
20 10.5
30 15.5 5

5
 5.5

10.5

15.5

10 20 30

AVERAGE CASE IS LINEAR

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 16

Example 2

Do two array have no common values?
public static boolean diff(int[] x, int[] y)

{

for (int i = 0; i < y.length; i++)

{

if (search(x, y[i]) != -1)

return false;

}

return true;

}

9

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 17

Worst Case Analysis

  Let m = the length of array x.
  Let n = the length of array y.
  The loop in diff repeats n times.
  Each call to search requires m comparisons.
  The total number of comparisons in the worst

case is:

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 18

Worst Case Analysis

  Assume m = n. (The arrays are the same
size.)

  Then the total number of comparisons in the
worst case is:

10

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 19

Analysis

n

number of
operations

n2 + n

n
(size of array)

number of
operations

10 110
20 420
30 930

510

310
110

420

930

10 20 30

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 20

Example 3

Is each item in an array unique?
public static boolean unique(int[] x)
{

 for (int i = 0; i < x.length; i++) {
 for (int j = 0; j < x.length; j++) {
 if (i != j && x[i] == x[j])
 return false;
 }
 }
 return true;

}

11

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 21

Worst Case Analysis

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 22

Example 4

Is each item in an array unique? (2nd try)
public static boolean unique(int[] x)

{

for (int i = 0; i < x.length; i++) {

for (int j = i+1; j < x.length; j++) {

if (x[i] == x[j])

return false;

}

}

return true;

}

12

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA 23

Worst Case Analysis

