
1

1

Sorting

N log N Sorts

7B

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

Heap Sort

  We can use a max-heap to sort data.
  Convert an array to a max-heap.
  Remove the root from the heap and store it in its

proper position in the same array. Repeat until all
elements in the array are in sorted order.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

3

Building the max-heap

0 1 2 3 4 5 6

39 53 95 72 61 48 83
39

0 1 2 3 4 5 6

53 39 95 72 61 48 83 39

53

0 1 2 3 4 5 6

95 39 53 72 61 48 83
53 39

95

ADD NEXT VALUE TO HEAP AND FIX HEAP

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

Building the max-heap (cont'd)

0 1 2 3 4 5 6

95 72 53 39 61 48 83 53 72

95

39

0 1 2 3 4 5 6

95 72 83 39 61 48 53
83 72

95

39 61 48 53

CONTINUE UNTIL THE HEAP IS COMPLETED...

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

3

5

Sorting from the heap
0 1 2 3 4 5 6

95 72 83 39 61 48 53

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:

0 1 2 3 4 5 6

53 72 83 39 61 48 95
53 72

83

39 61 48
0 1 2 3 4 5 6

83 72 53 39 61 48 95

FIX THE HEAP (NOT INCLUDING MAX):

83 72

95

39 61 48 53

remove max

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

Sorting from the heap (cont'd)
0 1 2 3 4 5 6

83 72 53 39 61 48 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:

0 1 2 3 4 5 6

48 72 53 39 61 83 95
53 61

72

39 48
0 1 2 3 4 5 6

72 61 53 39 48 83 95

FIX THE HEAP (NOT INCLUDING MAX):

53 72

83

39 61 48

remove max

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

7

Sorting from the heap (cont'd)
0 1 2 3 4 5 6

72 61 53 39 48 83 95

SWAP THE MAX OF THE HEAP
WITH THE LAST VALUE OF THE HEAP:

0 1 2 3 4 5 6

48 61 53 39 72 83 95
53 48

61

39
0 1 2 3 4 5 6

61 48 53 39 72 83 95

FIX THE HEAP (NOT INCLUDING THAT MAX):

53 61

72

39 48

remove max

REPEAT UNTIL THE HEAP
HAS 1 NODE LEFT

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

Run-Time Analysis
  Building the max-heap

  Each fix heap is O(log n).
  There are n elements added to the heap.
  Building the heap = O(n log n).

  Sorting from the max-heap.
  Removing max and fixing heap is O(log n).
  This is done n times.
  Sorting from the max-heap = O(n log n).

  O(n log n) + O(n log n) = ___________

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

5

9

Divide-and-Conquer Sorts

  Divide the elements to be sorted into two
groups of approximately equal size.

  Sort each of these smaller groups.
  Combine the two sorted groups into one

large sorted list.

 Use recursion to sort the smaller groups.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

10

Merge Sort
  Split the array into two “halves”.
  Sort each of the halves recursively using merge sort.
  Merge the two sorted halves into a new sorted array.

  Merge sort does not sort in place.

  Example:
66 33 77 55 / 11 99 22 88 44

 sort the halves recursively...
33 55 66 77 / 11 22 44 88 99

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

11

Merge Sort (cont’d)
Then merge the two sorted halves into a new array:
33 55 66 77 / 11 22 44 88 99
__ __ __ __ __ __ __ __ __

33 55 66 77 / 11 22 44 88 99
11 __ __ __ __ __ __ __ __

33 55 66 77 / 11 22 44 88 99
11 22 __ __ __ __ __ __ __

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

12

Merge Sort (cont’d)

33 55 66 77 / 11 22 44 88 99
11 22 33 __ __ __ __ __ __

33 55 66 77 / 11 22 44 88 99
11 22 33 44 __ __ __ __ __

33 55 66 77 / 11 22 44 88 99
11 22 33 44 55 __ __ __ __

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

7

13

Merge Sort (cont’d)

33 55 66 77 / 11 22 44 88 99
11 22 33 44 55 66 __ __ __

44 55 66 77 / 11 22 33 88 99
11 22 33 44 55 66 77 __ __

Once one of the halves has been merged into the new array,
copy the remaining element(s) of the other half into the new array:

44 55 66 77 / 11 22 33 88 99
11 22 33 44 55 66 77 88 99

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

14

Run-Time Analysis
  Let T(N) = number of comparisons to sort N elements

using merge sort.
  How many comparisons does it take

to sort half of the array? T(N/2)
  How many comparisons does it take

to merge the two halves? N-1 (max.)
  T(N) = 2*T(N/2) + N-1 (a recurrence relation)

  What is the stopping case? T(1) = 0
  Solve for T(N)

  You will see how to do this in 15-211.
  T(N) = N log2N - N + 1 = O(N log N)
15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

15

Quick Sort
  Choose a pivot element of the array.
  Partition the array so that

 - the pivot element is in the correct position
 for the sorted array

 - all the elements to the left of the pivot are
 less than or equal to the pivot

 - all the elements to the right of the pivot are
 greater than the pivot

  Sort the subarray to the left of the pivot and the
subarray to the right of the pivot recursively using
quick sort

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

16

Partitioning the array
Arbitrarily choose the first element as the pivot.
66 44 99 55 11 88 22 77 33
Search from the left end for the first element that is greater than

the pivot.
66 44 99 55 11 88 22 77 33
Search from the right end for the first element that is less than (or

equal to) the pivot.
66 44 99 55 11 88 22 77 33
Now swap these two elements.
66 44 33 55 11 88 22 77 99

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

9

17

Partitioning the array (cont’d)

66 44 33 55 11 88 22 77 99
From the two elements just swapped, search again from the left

and right ends for the next elements that are greater than and
less than the pivot, respectively.

66 44 33 55 11 88 22 77 99
Swap these as well.

66 44 33 55 11 22 88 77 99
Continue this process until our searches from each end meet.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

18

Partitioning the array (cont’d)
At this point, the array has been partitioned into two subarrays,

one with elements less than (or equal to) the pivot, and the
other with elements greater than the pivot.

66 44 33 55 11 22 88 77 99

Finally, swap the pivot with the last element in the first subarray
section (the elements that are less than the pivot).

22 44 33 55 11 66 88 77 99
Now sort the two subarrays on either side of the pivot using quick

sort recursively.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

10

19

Run-Time Analysis
  Assume the pivot ends up in the center position of

the array every time (recursively too).
  Then, quick sort runs in O(N log N) time just like

merge sort.
  However, what if the pivot doesn’t end up in the

center during partitioning?
 Example: Pivot is smallest element. Then we get
two subarrays, one of size 0, and the other of size
n-1 (instead of n/2 for each).

  Then, quick sort can perform as poorly as O(n2).

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

20

Some Improvements to Quick Sort

  Choose three values from the array, and use
the middle element of the three as the pivot.

66 44 99 55 11 88 22 77
 33

 Of 11, 33, 66, use 33 as the pivot.

  As quick sort is called recursively, if a subarray
is of “small size”, use insertion sort instead of
quick sort to complete the sorting to reduce the
number of recursive calls.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

