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Sorting 

Non-comparison Sorts 
Sorting in the Java API  

7C 
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Comparison Sorts 

  All of the sorts we've seen so far are comparison sorts. 
  The order of the elements is determined by comparing two 

elements at a time. 

  It has been proven that the worst-case order of 
complexity for comparison sorts is Ω(n log n). 
  O gives an asymptotically upper bound on the efficiency. 
  Ω gives an asymptotically lower bound on the efficiency. 

(more about this in 15-211) 

  But there are sorts that can sort in O(n)... 
 ... they just don't use pair-wise comparisons 
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Bucket Sort 
  Given an array of n elements that contain  

only k unique values (k < n), labeled n1, n2, ..., nk 
such that n1 < n2 < ... < nk. 

  Create an array of k "buckets", one for each 
unique value. 

  For each value in the array, move it into its 
corresponding bucket. 

  Copy the data values from each bucket, n1 to nk, 
back into the array to sort the data. 
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Bucket Sort Example 

51 41 42 31 43 32 52 
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51 

buckets are 
linked lists 

32 31 43 42 41 52 51 

insert each 
element at head 
of its bucket = O(n) 

remove each 
element from head 
of its bucket = O(n) 
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Sorts in the Java API 
  In Arrays class: 

  public static void sort(Object[] items)

 All objects must mutually Comparable. 
  Implemented with a modified merge sort in O(n log n) 
 Sort is stable. 

  In Collections class: 
  public static <T extends Comparable<T>> 
void sort(List<T> list)

 Same conditions as above. 
 Copies elements into an array and uses Arrays.sort 
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Sorts in the Java API 
  In Arrays class: 

  public static <T> void sort(T[] items, 
Comparator<? super T> comp)

  Another version allows a sort using a Comparator so 

ordering can be done on some other property other 
than the items' natural ordering. 

  For example: You might order strings not alphabetically, 
but instead by string length. 

  comp must be an object that implements the 
Comparator interface for type T or a superclass of 
type T. 
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Comparator Example 
public class StringLengthComp  
implements Comparator<String> {


public int compare(String s1, String s2) {


 
return s1.length() - s2.length();


}


}


Assume s is an array of strings. 
Arrays.sort(s);

Arrays.sort(s, new StringLengthComp()); 

uses String's  
compareTo to sort s 

uses StringLengthComp's 
compare to sort s 
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Sorting Linked Lists 

  Does the efficiency change if the  
data is in a linked list rather than an array? 

  Example:  
  Merge Sort in place 

null 
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