
1

1

Sorting

Non-comparison Sorts
Sorting in the Java API

7C

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

Comparison Sorts

  All of the sorts we've seen so far are comparison sorts.
  The order of the elements is determined by comparing two

elements at a time.

  It has been proven that the worst-case order of
complexity for comparison sorts is Ω(n log n).
  O gives an asymptotically upper bound on the efficiency.
  Ω gives an asymptotically lower bound on the efficiency.

(more about this in 15-211)

  But there are sorts that can sort in O(n)...
 ... they just don't use pair-wise comparisons

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

2

3

Bucket Sort
  Given an array of n elements that contain

only k unique values (k < n), labeled n1, n2, ..., nk
such that n1 < n2 < ... < nk.

  Create an array of k "buckets", one for each
unique value.

  For each value in the array, move it into its
corresponding bucket.

  Copy the data values from each bucket, n1 to nk,
back into the array to sort the data.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

Bucket Sort Example

51 41 42 31 43 32 52

32

43

52

31

42 41

51

buckets are
linked lists

32 31 43 42 41 52 51

insert each
element at head
of its bucket = O(n)

remove each
element from head
of its bucket = O(n)

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

3

5

Sorts in the Java API
  In Arrays class:

  public static void sort(Object[] items)

 All objects must mutually Comparable.
  Implemented with a modified merge sort in O(n log n)
 Sort is stable.

  In Collections class:
  public static <T extends Comparable<T>>
void sort(List<T> list)

 Same conditions as above.
 Copies elements into an array and uses Arrays.sort

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

6

Sorts in the Java API
  In Arrays class:

  public static <T> void sort(T[] items,
Comparator<? super T> comp)

  Another version allows a sort using a Comparator so

ordering can be done on some other property other
than the items' natural ordering.

  For example: You might order strings not alphabetically,
but instead by string length.

  comp must be an object that implements the
Comparator interface for type T or a superclass of
type T.

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

4

7

Comparator Example
public class StringLengthComp  
implements Comparator<String> {

public int compare(String s1, String s2) {

return s1.length() - s2.length();

}

}

Assume s is an array of strings.
Arrays.sort(s);

Arrays.sort(s, new StringLengthComp());

uses String's
compareTo to sort s

uses StringLengthComp's
compare to sort s

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

8

Sorting Linked Lists

  Does the efficiency change if the
data is in a linked list rather than an array?

  Example:
  Merge Sort in place

null

15-121 Introduction to Data Structures, Carnegie Mellon University - CORTINA

