UNIT 4B
lteration: Sorting

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Sort by

IDESCRPTIGN bl I

@ prcending
~

(=]

nding sconest
ewly listed
Frice + F&F iowest first

Then L Price + P&P highest first
= = Ascerding Price: loves=sd first
| i | - Pri highest first
Mame Artist % nessest first
tlizm '}'}1 Dlg Your Crave Mﬂaesl Mouse 1 12 i I ., f;r"
=] 1. used first
| B Ostriches & Chirping | Elliott Smith 0-33 | Al
[interlude (mila) Modest Mouse 58 |
Wl Ry ED welve Gor a File On... Blur 1:02 | Y
ama
[T Fewer Words Bzdly Drawn _.. 1:13 | 1l |Lube
@ Life's Incredible Ag... | Michael Giacc... 1:24; Search results for amd
Opticry @ 30 Cantury Man Scort Walker 1:26 Abaust 83,600 resuts
@ Lava In the Afternc. . | Michael Giacc... | 1:29]
m': The Chase Stephen Trask 1:31 Fesip Sortbr.
o : . | Al Relevance
@ The Way | Fael Inside | The Zombies 1:34 Videos
ﬂh Mr. Huph Will See ... | Michael Giace... | L35 Channels Vigw count
=) Plaslists Rating
m'l_ Dont Ask Me I'm O_.. Badly Drawn __. 1:36 &
[Let Me Tell You Ab... | Mark Mathers... 138 |7

T

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort

Given an array a of length n, n > 0.

1. Seti=1.

2. Whileiis not equal to n, do the following:
a. Insert a[i] into its correct position in a[0..i].
b.Add 1toi.

3. Return the array a which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

a = [53, 26, 76, 30, 14, 91, 68, 42]
i= 1
Insert a[1] into its correct position in a[0..1]
and thenadd 1to i:
53 moves to the right,
26 is inserted back into the array
a = [26, 53, 76, 30, 14, 91, 68, 42]

i= 2

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]
i-= 2
Insert a[2] into its correct position in a[0..2]
and thenadd 1to i:
76 is already in the correct place in a[0..2]
a = [26, 53, 76, 30, 14, 91, 68, 42]

i= 3

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

a = [26, 53, 76, 30, 14, 91, 68, 42]
i= 3
Insert a[3] into its correct position in a[0..3]

and thenadd 1to i:
76 moves to the right, then 53 moves to the right,
now 30 is inserted back into the array
a = [26, 30, 53, 76, 14, 91, 68, 42]

i= 4

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1.
2.

Seti=1.

While i is not equal to n, do the following:
Precondition for each iteration: a[0..i-1] is sorted

a. Insert a[i] into its correct position in a[0..i].
b.Add 1toi.

Postcondition for each iteration: a[0..i-1] is sorted

Return the array a which will now be sorted.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Look Closer at Insertion Sort

Given an array a of length n, n > 0.

1.
2.

3.

Seti=1.

While i is not equal to n, do the following:
Loop invariant: a[0..i-1] is sorted

a. Insert a[i] into its correct position in a[0..i].
b.Add 1toi.

Return the array a which will now be sorted.

A loop invariant is a condition that is true at the

start and end of each iteration of a loop.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example (cont’d)

a = [26, 30, 53, 76, 14, 91, 68, 42]
i= 4
Insert a[4] into its correct position in a[0..4]

and thenadd 1to i:
76 moves to the right, then 53 moves to the right,
then 30 moves to the right, then 26 moves to the right,
now 14 is inserted back into the array
a = [14, 26, 30, 53, 76, 91, 68, 42]
i= 5

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

a = [14, 26, 30, 53, 76, 91, 68, 42]
i= 5
Insert a[5] into its correct position in a[0..5]
and thenadd 1to i:
91 is already in its correct position
a = [14, 26, 30, 53, 76, 91, 68, 42]

i= 6

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

a = [14, 26, 30, 53, 76, 91, 68, 42]
i-= 6
Insert a[6] into its correct position in a[0..6]

and thenadd 1to i:
91 moves to the right,
76 moves to the right,
now 68 is inserted back into the array
a = [14, 26, 30, 53, 68, 76, 91, 42]
i= 7

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

a = [14, 26, 30, 53, 68, 76, 91, 42]
i= 7
Insert a[7] into its correct position in a[0..7]

and thenadd 1to i:
91 moves to the right, then 76 moves to the right,
then 68 moves to the right, then 53 moves to the right,
then 42 is inserted back into the array
a = [14, 26, 30, 42, 53, 68, 76, 91]
is= 8

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Example

[14, 26, 30, 42, 53, 68, 76, 91]
i=28

The array is sorted.

But how do we know that the algorithm always
sorts correctly?

15110 Principles of Computing, 13
Carnegie Mellon University - CORTINA

Reasoning with the Loop Invariant

The loop invariant is true at the end of each
iteration, including the last iteration. After the
last iteration, when we go to step 3:

a[0..i-1] is sorted AND i is equal to n

These 2 conditions imply that a[0..n-1] is sorted,
but this range covers the entire array, so the
array must always be sorted when we return our
final answer!

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Insertion Sort in Ruby

def isort (list)

a = list.clone

i=1

hile i !'= a.length do

whi * g- insert a[i] into a[0..i]
move_left (a, i) €—— |nits correct sorted
i=1i+1 position

end

return a

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Moving left

To move the element x at index i “left” to its correct
position, start at position i-1, and search left until we
find the first element that is less than x.

Then insert x back into the array to the right of the first
element that is less than x when you searched from
right to left in the sorted part of the array.

(The insert operation does not overwrite. Think of it
as “squeezing into the array”.)

Can you think of a special case for the step above?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Moving left: examples
Insert 68: /\

a = [14, 26, 30, 53, 76, 91, 68, 42]

Searching from right to left starting with 91, the first element less than 68 is 53.

Insert 68 to the right of 53.

Insert 76:

a = [26, 53, 76, 30, 14, 91, 68, 42]

Searching from right to left starting with 53, the first element less than 76 is 53.
Insert 76 to the right of 53 (where it was before).

Insert 14: SPECIAL CASE

a = [26, 30, 53, 76, 14, 91, 68, 42]
Searching from right to left starting with 76, all elements left of 14 are greater
than 14. Insert 14 into the position 0.

15110 Principles of Computing, 17
Carnegie Mellon University - CORTINA

The move_left algorithm

Given an array a of length n, n >0 and a value at
index i to be “moved left” in the array.
1. Remove ali] from the array and store in x.
2. Setj=i-1.
3. While j>=0and alj] > x, do the following:
a. Subtract 1 fromj.
4. Reinsert x into position a[j+1].

How is the special case handled here?

15110 Principles of Computing, 18
Carnegie Mellon University - CORTINA

move_left in Ruby

def move_left (a, i)

.] remove the item at
x = a.slice! (i) <—— positioniinarraya

and store it in x

j = i-1
while j >= 0 and a[j] > x do
j = J -1 logical operator AND:
both conditions must be true
end for the loop to continue

a.insert (j+1, x) <—— insertx atposition
j+1 of array a, shifting

end all elements from j+1
and beyond over one
position
151_1 0 Principles_ of Qomputing, 19
Carnegie Mellon University - CORTINA

10

