UNIT 5A
Recursion: Basics

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Recursion

* Arecursive operation is an operation
that is defined in terms of itself.

Sierpinski's
Gasket

http://fusionanomaly.net/recursion.jpg

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Recursive Definitions

* Every recursive definition includes two parts:

— Base case (non-recursive)
A simple case that can be done without solving
the same problem again.

— Recursive case(s)
One or more cases that are “simpler” versions
of the original problem.

* By “simpler”, we sometimes mean “smaller” or
“shorter” or “closer to the base case”.

15110 Principles of Computing, 3
Carnegie Mellon University - CORTINA

GCD

def gcd2(x, y)

if y == 0 then
base case
return x

else
return gecd2(y, x % y) recursive
end case
(a “simpler”
end version of
the same
problem)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Factorial

* Definition: n!=n(n-1)(n-2)...(2)(1)
* Since (n-1)(n-2)...(2)(1) = (n-1)!
— n!=n(n-1)!,forn>0
— nl=1forn=0(base case)
* Example:
41=4(3!)
31=3(2!)
21=2(1") =
11=1(0") =1(1)

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Factorial in Ruby

def factorial (n)
if n == 0 then
return 1
else
return n * factorial (n-1)
end
end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Fibonacci Numbers

* Asequence of numbers such that each number is
the sum of the previous two numbers in the
sequence, starting the sequence with 0 and 1.

* 0,1,1,2,3,5,8, 13, 21, 34, 55, 89, etc.

15110 Principles of Computing, 7
Carnegie Mellon University - CORTINA

Recursive Definition

e Letfib(n) = the n* Fibonacci number, n >0
— fib(0)=0 (base case)
— fib(1)=1 (base case)
— fib(n) = fib(n-1) + fib(n-2), n>1

15110 Principles of Computing, 8
Carnegie Mellon University - CORTINA

Recursive Definition

fib(5)
fib(4) fib(3)
fib(3) fib(2) fib(2) fib(1)
fib(2) | | fib(1) fib(1) | | fib(0) | | fib(1) fib(0)
fib(0) = 0
fib(1) || fib(0) fib(1) =1 _
fib(n) = fib(n-1) + fib(n-2), n > 1
151_10 Principles_ of Qomputing, 9
Carnegie Mellon University - CORTINA
Recursive Definition
5
3 2
2 1 1 1
1 1 1 0 1 0
fib(0) = 0
1 0 fib(1) =1
fib(n) = fib(n-1) + fib(n-2), n > 1
15110 Principles of Computing, 10

Carnegie Mellon University - CORTINA

Fibonacci Numbers in Ruby

def fib(n)
if n == 0 or n == 1 then
return n
else
return fib(n-1) + f£ib(n-2)
end
end

Inirb:
for i in 0..30 do puts fib(i) end
Why does it take longer to print each subsequent value?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Computing the sum of a list

def sumlist (list)
n = list.length

if n == 0 then Base case:
The sum of an empty list is 0.
return 0O ‘f””” Pty
else

return list[0] + sumlist (list[1l..n-1])

end \

Recursive case:
The sum of a list is the first element +
the sum of the rest of the list.

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:
. Draw a white square with top-left corner (x,y) and
a side length of size/2.
. Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

increasing X
Draw a fractal

(x.y)
- with top left corner
o at (x+size/2, y+size/2)
= and a side length
o of size/2.
3]
£

15110 Principles of Computing, 13
Carnegie Mellon University - CORTINA

Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:
. Draw a white square with top-left corner (x,y) and
a side length of size/2.
. Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

Draw a fractal

with top left corner

at (x+size/2, y+size/2)
and a side length

of size/2.

15110 Principles of Computing, 14
Carnegie Mellon University - CORTINA

Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

. Draw a white square with top-left corner (x,y) and
a side length of size/2.

. Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

Draw a fractal

with top left corner

at (x+size/2, y+size/2)
and a side length

of size/2.

15110 Principles of Computing, 15
Carnegie Mellon University - CORTINA

Simple Fractal in Ruby

(not all code shown)

def fractal(x, y, size)
return if size < 2 # base case
draw_square(x, y, size/2)
fractal (x+size/2, y+size/2, size/2)
end

def draw_fractal()
initial top-left (x,y) and size
fractal (0, 0, 512)

end

15110 Principles of Computing, 16
Carnegie Mellon University - CORTINA

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Towers of Hanoi
- Towers of Hanoi

D Wilh 8 discs.

A puzzle invented by
French mathematician
Edouard Lucas in 1883.

At a temple far away, priests were led to a courtyard with
three pegs and 64 discs stacked on one peg in size order.

— Priests are only allowed to move one disc at a time
from one peg to another.

— Priests may not put a larger disc on top of a smaller
disc at any time.

The goal of the priests was to move all 64 discs from the
leftmost peg to the rightmost peg.

According to the story, the world would end when the
priests finished their work.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Towers of Hanoi

Problem: Move n discs E
from peg A to peg C using peg B. A B c
1. Move n-1 discs from peg A to peg B é
i C. i t —
using peg C. (recursive step) A 5 c
2. Move 1 disc from peg A to peg C. é
A B C
3. Move n-1discs from pegBto C
using peg A. (recursive step)
A B C

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Towers of Hanoi in Ruby

def towers(n, from peg, to_peg, using peg)
if n >= 1 then
towers (n-1, from peg, using_peg, to_pegq)
puts "Move disc from " + from_peg
+ " to " + to_peg
towers (n-1, using_peg, to_peg, from_pegq)
end

end
Inirb: towers (4, "A", "C", "B")
How many moves do the priests need to move 64 discs?

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

10

