
1

UNIT 5A

Recursion: Basics

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Recursion

• A recursive operation is an operation

that is defined in terms of itself.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

Sierpinski's

Gasket

http://fusionanomaly.net/recursion.jpg

2

Recursive Definitions

• Every recursive definition includes two parts:

– Base case (non-recursive)

A simple case that can be done without solving

the same problem again.

– Recursive case(s)

One or more cases that are “simpler” versions

of the original problem.

• By “simpler”, we sometimes mean “smaller” or

“shorter” or “closer to the base case”.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

GCD

def gcd2(x, y)

if y == 0 then

return x

else

return gcd2(y, x % y)

end

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

base case

recursive
case
(a “simpler”

version of

the same

problem)

3

Factorial

• Definition: n! = n(n-1)(n-2)…(2)(1)

• Since (n-1)(n-2)…(2)(1) = (n-1)!

– n! = n(n-1)!, for n > 0

– n! = 1 for n = 0 (base case)

• Example:

4! = 4(3!) = 4(6) = 24

3! = 3(2!) = 3(2) = 6

2! = 2(1!) = 2(1) = 2

1! = 1(0!) = 1(1) = 1

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Factorial in Ruby

def factorial(n)

if n == 0 then

return 1

else

return n * factorial(n-1)

end

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

4

Fibonacci Numbers

• A sequence of numbers such that each number is

the sum of the previous two numbers in the

sequence, starting the sequence with 0 and 1.

• 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, etc.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Recursive Definition

• Let fib(n) = the nth Fibonacci number, n ≥ 0

– fib(0) = 0 (base case)

– fib(1) = 1 (base case)

– fib(n) = fib(n-1) + fib(n-2), n > 1

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

5

Recursive Definition

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2), n > 1

Recursive Definition

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

1

2

5

1 0

1 1

2

1 0

1

3

1 0

1

fib(0) = 0

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2), n > 1

6

Fibonacci Numbers in Ruby

def fib(n)

if n == 0 or n == 1 then

return n

else

return fib(n-1) + fib(n-2)

end

end

In irb:

for i in 0..30 do puts fib(i) end

Why does it take longer to print each subsequent value?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

Computing the sum of a list

def sumlist(list)

n = list.length

if n == 0 then

return 0

else

return list[0] + sumlist(list[1..n-1])

end

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

Recursive case:

The sum of a list is the first element +

the sum of the rest of the list.

Base case:

The sum of an empty list is 0.

7

Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

• Draw a white square with top-left corner (x,y) and
a side length of size/2.

• Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

(x,y) Draw a fractal

with top left corner

at (x+size/2, y+size/2)

and a side length

of size/2.
size

increasing x

in
c
re

a
s
in

g

y

Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

• Draw a white square with top-left corner (x,y) and
a side length of size/2.

• Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

size

Draw a fractal

with top left corner

at (x+size/2, y+size/2)

and a side length

of size/2.(x,y)

8

Simple Fractal

To draw a fractal with top-left corner (x,y) and a side length of size:

• Draw a white square with top-left corner (x,y) and
a side length of size/2.

• Draw another fractal with top-left corner (x+size/2, y+size/2)
and a side length of size/2. [recursive step]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

size

Draw a fractal

with top left corner

at (x+size/2, y+size/2)

and a side length

of size/2.

(x,y)

Simple Fractal in Ruby
(not all code shown)

def fractal(x, y, size)

return if size < 2 # base case

draw_square(x, y, size/2)

fractal(x+size/2, y+size/2, size/2)

end

def draw_fractal()

initial top-left (x,y) and size

fractal(0, 0, 512)

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

9

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

Towers of Hanoi

• A puzzle invented by
French mathematician
Edouard Lucas in 1883.

• At a temple far away, priests were led to a courtyard with
three pegs and 64 discs stacked on one peg in size order.

– Priests are only allowed to move one disc at a time
from one peg to another.

– Priests may not put a larger disc on top of a smaller
disc at any time.

• The goal of the priests was to move all 64 discs from the
leftmost peg to the rightmost peg.

• According to the story, the world would end when the
priests finished their work.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

Towers of Hanoi
with 8 discs.

10

Towers of Hanoi

Problem: Move n discs

from peg A to peg C using peg B.

1. Move n-1 discs from peg A to peg B
using peg C. (recursive step)

2. Move 1 disc from peg A to peg C.

3. Move n-1 discs from peg B to C
using peg A. (recursive step)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

A B C

A B C

A B C

A B C

Towers of Hanoi in Ruby

def towers(n, from_peg, to_peg, using_peg)

if n >= 1 then

towers(n-1, from_peg, using_peg, to_peg)

puts "Move disc from " + from_peg

+ " to " + to_peg

towers(n-1, using_peg, to_peg, from_peg)

end

end

In irb: towers(4, "A", "C", "B")

How many moves do the priests need to move 64 discs?

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

