UNIT 5C
Merge Sort

15110 Principles of Computing, 1
Carnegie Mellon University - CORTINA

Divide and Conquer

In the military: strategy to gain or maintain power

In computation:

— Divide the problem into “simpler” versions of
itself.

— Conguer each problem using the same process
(usually recursively).

— Combine the results of the “simpler” versions
to form your final solution.

Examples: Towers of Hanoi, fractals, Binary Search,

Merge Sort

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge Sort

* Required: Array A of n elements.

* Result: Returns a new array containing the same
elements in non-decreasing order.

* General algorithm for merge sort:
1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the
final sorted array.

15110 Principles of Computing, 3
Carnegie Mellon University - CORTINA

Divide (Split)

84 | 27 | 49 | 91 | 32 | 83 | 63 | 17

84 | 27 | 49 | 91 32 | 53 | 63 | 17

84 | 27 49 | 91 32 | 53 63 | 17

v | 84 27 49 91 32 53 63 17

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Conguer (Merge)

I 17 | 27 | 32 | 49 | 53 | 63 | 84 | 91
27 | 49 | 84 | 91 17 | 32 | 53 | 63
27 | 84 49 | 91 32 | 53 17 | 63
84 27 49 91 32 53 63 17
15110 Principles of Computing,
Carnegie Mellon University - CORTINA
Example 1: Merge
array a array b array cC
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12 29
0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12 29 31
0 1 2 3 0 1 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12 29 31 44

Example 1: Merge (cont’d)

array a array b array c

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12 29 31 44 58

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12 29 31 44 58 62

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
12 44 58 62 29 31 74 80 12 29 31 44 58 62 74 80

Example 2: Merge

array a array b array c

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
58 67 74 90 19 26 31 44 19

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
58 67 74 90 19 26 31 44 19 26

0 1 2 3 0 1 3 0 1 2 3 4 5 6 7
58 67 74 90 19 26 31 44 19 26 31

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
58 67 74 90 19 26 31 44 19 26 31 44

0 1 2 3 0 1 2 3 0 1 2 3 4 5 6 7
58 67 74 90 19 26 31 44 19 26 31 44 58 67 74 90

Merge

Required: Two arrays a and b.
- Each array must be sorted already in non-decreasing order.
* Result: Returns a new array containing the same
elements merged together into a new array in non-
decreasing order.

* WEe'll need two variables to keep track of where we
are in arrays a and b: index_a and index_b.

Set index_a equal to O.
Set index_b equal to 0.
Create an empty array c.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge (cont’d)

4. While index_a < the length of array a and
index_b < the length of array b, do the following:

a. If alindex_a] £ b[index_b], then do the following:
i. append afindex_a] on to the end of array c
ii.add 1 toindex_a
Otherwise, do the following:
i. append b[index_b] on to the end of array c
ii.add 1toindex_b

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge (cont’d)

(Once we finish step 4, we’ve added all of the elements of
either array a or array b to array c. The other array still has
some elements left that need to be added to array c.)

5. Ifindex_a < the length of array a, then:

append all remaining elements of array a on to the
end of array c

Otherwise:
append all remaining elements of array b on to the

end of array c
6. Return array c as the result.

15110 Principles of Computing, 1"
Carnegie Mellon University - CORTINA

Merge in Ruby

def merge(a, b)
index a = 0
index b = 0
c =[]
while index _a < a.length and index_b < b.length do
if a[index_a] <= b[index_b] then
c << al[index_a]
index a = index a + 1
else
¢ << b[index_Db]
index b = index b + 1
end

end

15110 Principles of Computing, 12
Carnegie Mellon University - CORTINA

Merge in Ruby (cont’d)

if (index_a < a.length) then
for i in (index a..a.length-1) do
c << al[i]
end
else
for i in (index b..b.length-1) do
c << bJ[i]
end
end
return c

end

15110 Principles of Computing, 13
Carnegie Mellon University - CORTINA

Merge Sort: Base Case

* General algorithm for merge sort:
1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the
final sorted array.

* What is the base case?
If the list has only 1 element, it is already sorted
so just return the list as the result.

15110 Principles of Computing, 14
Carnegie Mellon University - CORTINA

Merge Sort: Halfway Point

* General algorithm for merge sort:
1. Sort the first half using merge sort. (recursive!)
2. Sort the second half using merge sort. (recursive!)
3. Merge the two sorted halves to obtain the
final sorted array.

* How do we determine the halfway point where we
want to split the array list?

First half: 0..list.length/2-1
Second half: 1list.length/2..list.length-1

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Merge Sort in Ruby

def msort (list)
return list if list.length == 1 §# base case
halfway = list.length/2
listl = 1list[0..halfway-1]
list2 = list[halfway..list.length-1]
newlistl = msort (listl) # recursive!
newlist2 = msort (list2) # recursive!
newlist = merge (newlistl, newlist2)
return newlist

end

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Analyzing Efficiency

* If you merge two lists of size i/2 into one new list of
size i, what is the maximum number of appends
that you must do?

* Clearly, each element must be appended to the
new list at some point, so the total number of
appends is i.

* If you have a set of pairs of lists that need to be
merged (two pairs at a time), and the total number
of elements in all of the lists combined is n, the
total number of appends will be n.

15110 Principles of Computing, 17
Carnegie Mellon University - CORTINA

How many group merges?

* How many group merges does it take to go from
n groups of size 1 to 1 group of size n?

* Example: Merge sort on 32 elements.
— Break down to groups of size 1 (base case).
— Merge 32 lists of size 1 into 16 lists of size 2. |
— Merge 16 lists of size 2 into 8 lists of size 4.
— Merge 8 lists of size 4 into 4 lists of size 8. — 5=1log,32
— Merge 4 lists of size 8 into 2 lists of size 16.

— Merge 2 lists of size 16 into 1 list of size 32. _J
* In general: log,n group merges must occur.

15110 Principles of Computing,
Carnegie Mellon University - CORTINA

Putting it all together

Total number
of elements
per level is

always n.

go from n groups of size 1 to

It takes log,n iterations to
a single group of size n.

It takes n appends to merge all pairs to the next higher level.

15110 Principles of Computing, 19
Carnegie Mellon University - CORTINA

Big O

* In the worst case, merge sort requires
O(n log n) time to sort an array with n elements.

Number of operations Order of Complexity

n log,n O(n log n)
4n log,on O(n log n)
nlog,n + 2n O(n log n)

15110 Principles of Computing, 20
Carnegie Mellon University - CORTINA

10

O(N log N)

(not drawn to scale)

Number of a
Operations n log,n = O(n log n)
384 Y
For an n log, n algorithm,
224 the performance is better
than a quadratic algorithm
4 but just a little worse than
122 > 96 a linear algorithm.
16 32 64 n

(amount of data)

15-105 Principles of
Computation, Carnegie

Mellon University -
CORTINA

21

Comparing Insertion Sort to Merge Sort

(Worst Case)
n isort (n(n+1)/2) msort (n log,n)
8 36 24
16 136 64
32 528 160
210 524,800 10,240
220 549,756,338,176 20,971,520

For array sizes less than 100, there’s not much
difference between these sorts, but for larger arrays
sizes, there is a clear advantage to merge sort.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 22

11

Sorting and Searching

* Recall that if we wanted to use binary search,
the array must be sorted.

— What if we sort the array first using merge sort?

* Merge sort O(nlogn) (worst case)
* Binary search O(log n) (worst case)
* Total time: O(n log n) + O(log n) = O(n log n)

(worst case)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 23

Comparing Big O Functions

Numberof a ©O(2") Oo(n?) O(n log n)
Operations
O(n)
O(log n)
O(1)
n

(amount of data)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 24

12

Merge Sort: Iteratively

(optional)

* Ifyou are interested, the textbook discusses an
iterative version of merge sort which you can
read on your own.

* This version uses an alternate version of the
merge function that is not shown in the

textbook but is given in the RubyLabs gem.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA 25

13

