
1

UNIT 6A

Organizing Data: Lists

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Data Structure

• The organization of data is a very important issue for

computation.

• A data structure is a way of storing data in a computer so

that it can be used efficiently.

– Choosing the right data structure will allow us to

develop certain algorithms for that data that are more

efficient.

– An array (or list) is a very simple data structure for

holding a sequence of data.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

2

Arrays in Memory

• Typically, array elements are stored in adjacent memory

cells. The subscript (or index) is used to calculate an offset

to find the desired element.

• Example: data = [50, 42, 85, 71, 99]

Assume integers are stored using

4 bytes (32 bits).

• If we want data[3], the computer takes

the address of the start of the array

and adds the offset * the size of

an array element to find the

element we want.

• Do you see why the first index of an array is 0 now?
15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

Address Contents

100 50

104 42

108 85

112 71

116 99

Location of data[3] is 100 + 3*4 = 112

Arrays: Pros and Cons

• Pros:

– Access to an array element is fast since we can

compute its location quickly.

• Cons:

– If we want to insert or delete an element, we have

to shift subsequent elements which slows our

computation down.

– We need a large enough block of memory to hold

our array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

3

Linked Lists

• Another data structure that stores a sequence of

data values is the linked list.

• Data values in a linked list do not have to be stored

in adjacent memory cells.

• To accommodate this feature, each data value has

an additional “pointer” that indicates where the

next data value is in computer memory.

• In order to use the linked list, we only need to

know where the first data value is stored.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Linked List Example

• Linked list to store the sequence: 50, 42, 85, 71, 99

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

address data next

100 42 148

108 99 0 (null)

116

124 50 100

132 71 108

140

148 85 132

156

Starting

Location of

List (head)

124

Assume each

integer and pointer

requires 4 bytes.

4

Linked List Example

• To insert a new element, we only need to change

a few pointers.

• Example:

Insert 20

after 42.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

address data next

100 42 156

108 99 0 (null)

116

124 50 100

132 71 108

140

148 85 132

156 20 148

Starting

Location of

List (head)

124

Drawing Linked Lists Abstractly

• L = [50, 42, 85, 71, 99]

• Inserting 20 after 42:

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

50 42 85 71 null99

head

50 42 85 71 null99

head

20

step 1step 2

We link the new node
to the list before breaking
the existing link.

5

Linked Lists: Pros and Cons

• Pros:

– Inserting and deleting data does not require us to

move/shift subsequent data elements.

• Cons:

– If we want to access a specific element, we need

to traverse the list from the head of the list to find

it which can take longer than an array access.

– Linked lists require more memory. (Why?)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

Two-dimensional arrays

• Some data can be organized efficiently in a table

(also called a matrix or 2-dimensional array)

• Each cell is denoted

with two subscripts,

a row and column

indicator

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

B 0 1 2 3 4

0 3 18 43 49 65

1 14 30 32 53 75

2 9 28 38 50 73

3 10 24 37 58 62

4 7 19 40 46 66

B[2][3] = 50

6

2D Arrays in Ruby

data = [[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]

]

data[0] => [1, 2, 3, 4]

data[1][2] => 7

data[2][5] => nil

data[4][2] => undefined method '[]' for nil

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

2D Array Example in Ruby

• Find the sum of all elements in a 2D array
def sumMatrix(table)

sum = 0

for row in 0..table.length-1 do

for col in 0..table[row].length-1 do

sum = sum + table[row][col]

end

end

return sum

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

number of rows in the table

number of columns in the

given row of the table

7

Tracing the Nested Loop

row col sum

0 0 1

0 1 3

0 2 6

0 3 10

1 0 15

1 1 21

1 2 28

1 3 36

2 0 45

2 1 55

2 2 66

2 3 78

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

0 1 2 3

0 1 2 3 4

1 5 6 7 8

2 9 10 11 12

for row in 0..table.length-1 do

for col in 0..table[row].length-1 do

sum = sum + table[row][col]

end

end

table.length = 3

table[row].length = 4 for every row

Stacks

• A stack is a data structure that works

on the principle of Last In First Out (LIFO).

– LIFO: The last item put on the stack is

the first item that can be taken off.

• Common stack operations:

– Push – put a new element on to the

top of the stack

– Pop – remove the top element from the

top of the stack

• Applications: calculators, compilers,

programming

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

8

RPN

• Some modern calculators use Reverse Polish Notation

(RPN)

– Developed in 1920 by

Jan Lukasiewicz

– Computation of

mathematical formulas

can be done without

using any parentheses

– Example:

(3 + 4) * 5 =

becomes in RPN:

3 4 + 5 *

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

RPN Example

Convert the following standard mathematical

expression into RPN:

(23 – 3) / (4 + 6)

23 3 – 4 6 +
operand1 operand2 operator operand1 operand2 operator

23 3 – 4 6 + /
operand1 operand2 operator

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

9

Evaluating RPN with a Stack

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

A

i == A.length?

Pop top 2 numbers
Perform operation
Push result on S

Push x on S

i � 0

Output
Pop S

yes

no

A

x � A[i]

Is x a number?

yes

no

i � i + 1

23 3 - 4 6 + /23 3 - 4 6 + /23 3 - 4 6 + /23 3 - 4 6 + /23 3 - 4 6 + /23 3 - 4 6 + /23 3 - 4 6 + /23 3 - 4 6 + /

Example Step by Step

• RPN: 23 3 - 4 6 + /

• Stack Trace:

6

3 4 4 10

23 23 20 20 20 20 2

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

10

Stacks in Ruby

• You can treat arrays (lists) as stacks in Ruby.
stack x

stack = [] []

stack.push(1) [1]

stack.push(2) [1,2]

stack.push(3) [1,2,3]

x = stack.pop() [1,2] 3

x = stack.pop() [1] 2

x = stack.pop() [] 1

x = stack.pop() nil nil

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Queues

• A queue is a data structure that

works on the principle of

First In First Out (FIFO).

– FIFO: The first item stored in the queue

is the first item that can be taken out.

• Common queue operations:

– Enqueue – put a new element in to the

rear of the queue

– Dequeue – remove the first element

from the front of the queue

• Applications: printers, simulations, networks

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

