
1

UNIT 6B

Organizing Data: Hash Tables

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
1

Comparing Algorithms

• You are a professor and you want to find an exam
in a large pile of n exams.

• Search the pile using linear search.

– Per student: O(n)

– Total for n students: O(n2)

• Have an assistant sort the exams first by last name.

– Assistant’s work: O(n log n) using merge sort

– Professor:

• Search for one student: O(log n) using binary search

• Total for n students: O(n log n)

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
2

2

Another way

• Set up a large number of “buckets”.

• Place each exam into a bucket based on some

function.

– Example: 100 buckets, each labeled with a value from 00

to 99. Use the student’s last two digits of their student ID

number to choose the bucket.

• Ideally, if the exams get distributed evenly, there will

be only a few exams per bucket.

– Assistant: O(n) putting n exams into the buckets

– Professor: O(1) search for an exam by going directly to the

relevant bucket and searching through a few exams.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
3

Strings and ASCII codes

s = "hello"

for i in 0..s.length-1 do

print s[i], "\n"

end

104

101

108

108

111

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
4

You can treat a string like an array

in Ruby.

If you access the ith character,

you get the ASCII code for that

character.

3

Hash table

• Let’s assume that we are going to store only lower

case strings into an array (hash table).

table1 = Array.new(26)

=> [nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
5

Hash table

• We could pick the array position where each string

is stored based on the first letter of the string using

this hash function:

def h(string)

return string[0] - 97

end

The ASCII values of lowercase letters are:

“a” -> 97, “b” -> 98, “c” -> 99, “d” -> 100, etc.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
6

4

Inserting into Hash Table

• To insert into the hash table, we simply use the

hash function h to determine which index

(“bucket”) to store the element.

def insert(table, name)

table[h(name)] = name

end

insert(table1, “aardvark”)

insert(table1, “beaver”) ...

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
7

Hash function (cont’d)

• Using the hash function h:

– “aardvark” would be stored in an array at index 0

– “beaver” would be stored in an array at index 1

– “kangaroo” would be stored in an array at index 10

– “whale” would be stored in an array at index 22

table1

=> ["aardvark", "beaver", nil, nil, nil,

nil, nil, nil, nil, nil, "kangaroo", nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, nil, "whale", nil, nil, nil]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
8

5

Hash function (cont’d)

• But if we try to insert “bunny” and “bear” into the

hash table, each word overwrites the previous

word since they all hash to index 1:

>> insert(table1,"bunny")

>> insert(table1,"bear")

>> table1

=> ["aardvark", "bear", nil, nil, nil, nil,

nil, nil, nil, nil, "kangaroo", nil, nil,

nil, nil, nil, nil, nil, nil, nil, nil,

nil, "whale", nil, nil, nil]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
9

Revised Hash table

• Let’s make our hash table an array of arrays (an

array of “buckets”)

• Each bucket can hold more than one string.

table2 = Array.new(26)

for i in 0..25 do

table2[i] = []

end

=> [[], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], [], [], [], [], [],

[], [], [], [], [], []]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
10

6

Revised insert function

def insert(table, key)

find the bucket (array) in the table

array using the hash function h

bucket = table[h(key)]

append the key string to the bucket

array

bucket << key

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
11

Inserting into new hash table

insert(table2, "aardvark")

>> insert(table2, "beaver")

>> insert(table2, "kangaroo")

>> insert(table2, "whale")

>> insert(table2, "bunny")

>> insert(table2, "bear")

>> table2

=> [["aardvark"], ["beaver", "bunny",

"bear"], [], [], [], [], [], [], [], [],

["kangaroo"], [], [], [], [], [], [], [],

[], [], [], [], ["whale"], [], [], []]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
12

7

Collisions

• “beaver”, “bunny” and “bear” all end up in the same

bucket.

• These are collisions in a hash table.

• The more collisions you have in a bucket, the more

you have to search in the bucket to find the desired

element.

• We want to try to minimize the collisions by creating

a hash function that distribute the keys (strings) into

different buckets as evenly as possible.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
13

First Try

def h(string)

k = 0

for i in 0..string.length-1 do

k = string[i] + k

end

return k

end

h(“hello”) => 532

h(“olleh”) => 532

Permutations still give same index (collision) and numbers are high.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
14

8

Second Try

def h(string)

k = 0

for i in 0..string.length-1 do

k = string[i] + k*256

end

return k

end

h(“hello”) => 448378203247

h(“olleh”) => 478560413032

Better, but numbers are still high. We probably don’t want to

(or can’t) create arrays that have indices this large.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
15

Third Try

def h(string, tablesize)

k = 0

for i in 0..string.length-1 do

k = string[i] + k*256

end

return k % tablesize

end

We can use the modulo operator to take the large

values and map them to indices for a smaller array.

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
16

9

Revised insert function

def insert(table, key)

find the bucket (array) in the table

array using the hash function h

bucket = table[h(key, table.length)]

append the key string to the bucket

array

bucket << key

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
17

Final results

table3 = Array.new(13)

for i in 0..12 do table3[i] = [] end

=> [[], [], [], [], [], [], [], [], [], [], [], [],

[]]

>> insert(table3,"aardvark")

>> insert(table3,"bear")

>> insert(table3,"bunny")

>> insert(table3,"beaver")

>> insert(table3,"dog")

>> table3

=> [[], [], [], [], [], [], [], [], [], ["bunny"],

["aardvark", "bear"], ["dog"], ["beaver"]]

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
18

Still have one

collision, but

b-words are

distributed better.

10

Searching in a hash table

To search for a key, use the hash function to find out which

bucket it should be in, if it is in the table at all.

def contains?(table, key)

bucket = table[h(key,table.length)]

for entry in bucket do

return true if entry == key

end

return false

end

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
19

Efficiency

• If the keys (strings) are distributed well throughout

the table, then each bucket will only have a few keys

and the search should take O(1) time.

• Example:

If we have a table of size 1000 and we hash 4000 keys

into the table and each bucket has approximately the

same number of keys (approx. 4), then a search will

only require us to look at approx. 4 keys => O(1)

– But, the distribution of keys is dependent on the keys and

the hash function we use!

15110 Principles of Computing,

Carnegie Mellon University - CORTINA
20

