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UNIT 7A
Data Representation: Numbers and Text
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Digital Data

10010101011110101010110101001110
• What does this binary sequence represent?

• It could be:

– an integer

– a floating point number

– text encoded with ASCII or another standard

– a pixel of an image

– several digital samples of a music recording

– an instruction that the computer is executing

– ...

15110 Principles of Computing, 

Carnegie Mellon University - CORTINA
2



2

Integer Representation

• An integer can be represented using binary.

• An integer can be:

– unsigned (always considered non-negative)

– signed (positive or negative)

• An integer can be represented using varying 

numbers of bits

– 8 bits (byte) ̶      32 bits

– 16 bits (word) ̶      64 bits  ....

15110 Principles of Computing, 

Carnegie Mellon University - CORTINA
3

Unsigned Integers

• Every bit represents a power of 2.

• Example (8 bits):
___ ___ ___ ___ ___ ___ ___ ___

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

1 0 1 1 0 1 0 1

27 25 24 22 20

128 +   32 + 16 +   4 +     1 = 181 
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Unsigned Integers: Range

bits minimum maximum

8 0 28 – 1 

(255)

16 0 216 – 1

(65,535)

32 0 232 – 1

(4,294,967,295)
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Signed Integers

• Every bit represents a power of 2 except the 

“left-most” bit, which represents the sign of 

the number (0 = positive, 1 = negative)

• Example for positive integer (8 bits):
_0_ ___ ___ ___ ___ ___ ___ ___

+   26 25 24 23 22 21 20

0 0 1 1 0 1 0 0

+ 25 24 22

32 + 16 +   4         = +52 
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Signed Integers: 2’s complement

• When the leftmost bit is a 1, the integer is 

negative.

• To find its magnitude, we take the 2’s 

complement of this number.

– The 2’s complement is obtained by flipping each 

bit of the number (from 0 to 1, or 1 to 0) and 

then adding 1 to that number.
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Signed Integers: Negative

• What value is this signed integer?
1 1 0 0 1 1 0 0

- (leftmost bit 1 -> negative)

Flip each bit:

0 0 1 1 0 0 1 1

and add 00000001 to get magnitude:

0 0 1 1 0 1 0 0

25 24 22

32 + 16 +   4         =  52

So, 11001100 = -52 
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Signed Integers: Negative

• Example: How do you store -52 in 8 bits?

Start with +52:
0 0 1 1 0 1 0 0

25 24 22

32 + 16 +   4         =  52

Flip each bit:

1 1 0 0 1 0 1 1 

and add 00000001 (in base 2):

1 1 0 0 1 1 0 0  = -52
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2’s complement property

• When you add a number to its 2’s 

complement (in binary), you always get 0.

– Remember, you’re using base 2 arithmetic.

• Example (using 8 bits):

00110100 +52

+ 11001100 -52

00000000 0 
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Signed Integers: Range

bits minimum maximum

8 –27 27 – 1 

(–128) (+127)

10000000 (binary) 01111111 (binary)

16 –215 215 – 1

(–32,768) (+32,767)

32 –231 231 – 1

(–2,147,483,648) (+2,147,483,647)
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Text: ASCII standard

• ASCII (American Standard Code for Information 

Interchange)

– 7-bit code to represent standard U.S. characters on a 

keyboard

– Typically stored using 8 bits.

– The 8th bit is sometimes used for parity (more on this 

shortly).
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ASCII table

• Values above are represented in hexadecimal 

(base 16).

• ASCII code for “M” is 4D (hex).
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ASCII Example

• The ASCII code for “M” is 4D hexadecimal.

• Conversion from base 16 to base 2:
hex binary hex binary hex binary hex binary

0 0000 4 0100 8 1000 C 1100

1 0001 5 0101 9 1001 D 1101

2 0010 6 0110 A 1010 E 1110

3 0011 7 0111 B 1011 F 1111

• 4D (hex) = 0100 1101 (binary) = 77 (decimal)

(leftmost bit can be used for parity)
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Parity

• To detect transmission errors, the 8th

(leftmost) bit could be used as an error-

detection bit.

• Even parity: Set the leftmost bit so that the 

number of 1’s in the byte is even.

• Odd parity: Set the leftmost bit so that the 

number of 1’s in the byte is odd.
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Example

• The character “M” is transmitted using odd parity.

• “M” in ASCII (7-bits) is 1001101.

• Using odd parity, we transmit 11001101 since this 

makes the number of 1’s odd.

• If the receiver receives a character with an even 

number of 1’s, the receiver knows something went 

wrong and requests a retransmission.

– If two bits are flipped during transmission, we can’t detect 

this with this simple parity scheme, however the 

probability of 2 or more bits in error is extremely low.
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• Seven characters are transmitted here as bytes 

using even parity along with a special 8th byte.

• The two colors represent 1’s and 0’s.

• One bit is in error. Can you find it?
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Floating Point Numbers

Age of the Universe in years:

+ 13.7 X 10 9

sign significand exponent

• Floating point numbers are commonly 

represented as a binary number with these 

three components.
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IEEE-754 standard

• Most common encoding of floating point 

numbers on computers today.

• 32-bit (“single-precision”) floating point:

_ ________ _______________________

exponent       significand

(8 bits)        (23 bits)

sign

(1 bit)

15110 Principles of Computing, 

Carnegie Mellon University - CORTINA
19

IEEE-754 standard

• Binary Significand

– Always assumes the form 1.XXXXXXXXX

in binary. Does not store the leading 1.

– Stores the fractional part using 23 bits.

• Exponent

– Stores exponent offset by 127.

• Example: An exponent of -6 would be stored as 121.

– Stores exponent as unsigned 8-bit integer.

– Exponent range: min -126, max +127
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Example: IEEE-754

• Floating point number in binary:

- 1.0110111 X 200011010

1 10011001 01101110000000000000000

exponent       significand

(8 bits)        (23 bits)

sign 00011010 + 01111111

(1 bit)                = 10011001
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