
4/18/2012

1

UNIT 13B
AI: Natural Language Processing

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
1

The Turing Test

• Turing publishes Computing Machinery

and Intelligence in 1950.

• Describes a test (now called the Turing Test) to

determine whether a computer can be called

intelligent.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
2

A machine is considered

intelligent if an interrogator

cannot tell if a human or a

computer is answering a

set of questions using

typewritten responses.

4/18/2012

2

Natural Language Processing

• Natural language processing involves the interactions

between a computer and a human via spoken (or

written) language.

• ELIZA

– One of the first programs to build a conversation between

a human and a computer, created by Joseph Weizenbaum

in 1966.

– Computer responses were created based on scripts.

– Most famous example was DOCTOR which simulated a

Rogerian psychotherapist.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
3

ELIZA

H: My father wouldn’t buy me a puppy.

C: Tell me more about your family.

H: I am sad I never got a puppy.

C: Can you explain what made you sad you

never got a puppy?

H: I am sad we never had a chance to play fetch.

C: I am sorry to hear you are sad we never had a

chance to play fetch.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
4

4/18/2012

3

Searching a String

>> s = “My dog ate the caterpillar.”

=> “My dog ate the caterpillar.”

>> s.include?(“dog”)

=> true

>> s.include?(“Caterpillar”)

=> false

>> s.include?(“cat”)

=> true

>> s.index(“the”)

=> 11

>> s.slice!(11,3)

=> “the”

>> s

=> "My dog ate caterpillar."

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
5

Regular Expressions

• A regular expression is a rule that describes the

format required for a specific string.

>> s = “how now browner cow ow”

=> “how now browner cow ow”

>> r = /.ow/

=> /.ow/

>> s.scan(r)

=> [“how”, “now”, “row”, “cow”, “ ow”]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
6

r is a regular expression that says

match an string consisting of

3 characters, where the first character

is anything and the next 2 characters

are ‘o’ and ‘w’ exactly

4/18/2012

4

RubyLabs: Pattern

• A (sentence) Pattern is a mapping from a

regular expression to a set of 1 or more

responses.

• Example:

>> p1 = Pattern.new(“dog”,

[“Tell me more about your pet”,

“Go on”]

=> dog: [“Tell me more about your

pet”, “Go on”]

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
7

creates a regular expression

based on the first argument

include

ElizaLab

More about Patterns

The apply method tries to match an input

sentence to a regular expression. If it can, it

returns one of supplied response strings.
>> p1.apply(“I love my dog.”)

=> “Tell me more about your pet.”

>> p1.apply(“My dog is really smart.”)

=> “Go on.”

>> p1.apply(“Much smarter than my cat.”)

=> nil

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
8

4/18/2012

5

Groups

• We can specify a group so that any member will

cause a match during a scan.

>> p2 = Pattern.new(“(cat|dog|bird)”,

[“Tell me more about your pet”, “Go on”]

>> p2.apply(“My dog is smelly.”)

=> “Go on.”

>> p2.apply(“My cat ate my bird.”)

=> “Tell me more about your pet.”

>> p2.apply(“I miss Polly a lot.”)

=> nil
15110 Principles of Computing, Carnegie

Mellon University - CORTINA
9

Placeholders

• We can use placeholders to store the part of a

pattern that matches so we can use it in the

response.

>> p = Pattern.new(“(cat|dog|bird)”)

>> p.add_response(“Tell me more about the $1”)

>> p.add_response(“A $1? Interesting.”)

>> p.apply(“A dog ate my homework.”)

=> “Tell me more about the dog.”

>> p.apply(“My cat ate my bird.”)

=> “A cat? Interesting.”

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
10

4/18/2012

6

Placeholders (cont’d)

>> p = Pattern.new(“I (like|love|hate) my

(cat|dog|bird)”

>> p.add_response(“Why do you $1 your $2?”)

>> p.add_response(“Tell me more about your $2”)

>> p.apply(“I like my dog.”)

=> “Why do you like your dog?”

>> p.apply(“I hate my cat.”)

=> “Tell me more about your cat.”

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
11

Wildcards

• We can use a wildcard symbol (.*) to match any

number of characters.

>> p = Pattern.new(“I am afraid of (.*)”)

>> p.add_response(“Why are you afraid of $1?”)

>> p.apply(“I am afraid of ghosts”)

=> “Why are you afraid of ghosts?”

>> p.apply(“I am afraid of Tom”)

=> “Why are you afraid of Tom?”

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
12

4/18/2012

7

A Note About Pattern

• Pattern takes a string and converts it to a regular

expression, adding some special characters.

\b word boundary i ignore case

>> p = Pattern.new(“dog”)

>> p.regexp => /\bdog\b/i

>> p = Pattern.new(“I like .*”)

>> p.regexp => /\bI like (.*)/i

>> p = Pattern.new(“.eat”)

>> p.regexp => /.eat\b/i

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
13

Another Note About Pattern

• If you want to match against a character used as a

special regular expression code, use \\

>> p = Pattern.new(“I like .*.”)

>> p.regexp => /\bI like (.*)./i

>> p = Pattern.new(“I like .*\.”)

>> p.regexp => /\bI like (.*)./i

>> p = Pattern.new(“I like .*\\.”)

>> p.regexp => /\bI like (.*)\./i

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
14

4/18/2012

8

Postprocessing

• To make things more realistic, we can replace

personal pronouns with their opposites.

>> p = Pattern.new(“I am (.*)”,

[“Are you really $1?”])

>> p.apply(“I am near my car”)

=> “Are you really near my car?”

>> p.apply(“I am annoyed at you”)

=> “Are you really annoyed at you?”

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
15

Postprocessing (cont’d)

>> Eliza.post[“my”] = “your”

>> Eliza.post[“you”] = “me”

>> Eliza.post

=> {“my” => “your”, “you” => “me” }

>> p.apply(“I am near my car.”)

=> “Are you really near your car?”

>> p.apply(“I am annoyed at you.”)

=> “Are you really annoyed at me?”

>> p.apply(“I am sad, my my my.”)

=> "Are you really sad, your your your?"

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
16

An associative array

like we used in

Huffman trees.

4/18/2012

9

Preprocessing

• Preprocessing is used to transform part of a

sentence before pattern matching is performed.
>> p = Pattern.new(“I am afraid of (.*)”)

>> p.add_response(“Why are you afraid of $1?”)

>> p.apply(“I’m afraid of ghosts”)

=> nil

>> Eliza.pre[“I’m”] = “I am”

>> p.apply(“I’m afraid of ghosts”)

=> “Why are you afraid of ghosts?”

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
17

Algorithm for a Conversation

1. Perform any preprocessing on the sentence.

2. Break the sentence into words.

3. If there is a rule for a word, add the rule to a

priority queue.

4. Try the rules in order of decreasing priority.

5. If a rule applies to the input sentence, apply

postprocessing rules to placeholder variables

and return the response.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
18

4/18/2012

10

Eliza and the Turing Test

• Human (natural) language is very complex.

“You said I wouldn’t be afraid of horses

if I visited a state fair, but when I was there

I was chased by a pig, and now I’m having

nightmares about bacon.”

Natural language processors (NLPs) must use

parsers to break a sentence down into its

constituent parts (noun, verb, etc.) to

determine an appropriate response.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
19

Eliza and the Turing Test

• Human (natural) language is very complex.

“The lions were lying down in the grass.”

A: Go on.

“They were quiet”

A: Why were the lions quiet?

Natural language processors (NLPs) must have

memory to associate words (e.g. “they”) to

words from previous sentences.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
20

4/18/2012

11

Eliza and the Turing Test

• Human (natural) language is very complex.

“The elephant was huge.”

A: How big was it?

“The cat fell into the well.”

A: Was it able to get out?

NLPs must use semantics to assign meaning to

certain phrases in order to generate

appropriate responses.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
21

Eliza and the Turing Test

• Human (natural) language is very complex.

“The dog ran across the backyard while I

waited on my patio.”

A: What happened when the dog reached the

patio?

NLPs must establish inferences to add

information to sentences that is not given but

is assumed.

15110 Principles of Computing, Carnegie

Mellon University - CORTINA
22

