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UNIT 13B
AI: Natural Language Processing
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The Turing Test

• Turing publishes Computing Machinery 

and Intelligence in 1950.

• Describes a test (now called the Turing Test) to 

determine whether a computer can be called 

intelligent.
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A machine is considered

intelligent if an interrogator

cannot tell if a human or a

computer is answering a

set of questions using 

typewritten responses.
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Natural Language Processing

• Natural language processing involves the interactions 

between a computer and a human via spoken (or 

written) language.

• ELIZA

– One of the first programs to build a conversation between 

a human and a computer, created by Joseph Weizenbaum 

in 1966.

– Computer responses were created based on scripts.

– Most famous example was DOCTOR which simulated a 

Rogerian psychotherapist.
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ELIZA

H: My father wouldn’t buy me a puppy.

C: Tell me more about your family.

H: I am sad I never got a puppy.

C: Can you explain what made you sad you 

never got a puppy?

H: I am sad we never had a chance to play fetch.

C: I am sorry to hear you are sad we never had a 

chance to play fetch.
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Searching a String

>> s = “My dog ate the caterpillar.”

=> “My dog ate the caterpillar.”

>> s.include?(“dog”)

=> true

>> s.include?(“Caterpillar”)

=> false

>> s.include?(“cat”)

=> true

>> s.index(“the”)

=> 11

>> s.slice!(11,3)

=> “the”

>> s

=> "My dog ate  caterpillar."
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Regular Expressions

• A regular expression is a rule that describes the 

format required for a specific string.

>> s = “how now browner cow ow”

=> “how now browner cow ow”

>> r = /.ow/

=> /.ow/

>> s.scan(r)

=> [“how”, “now”, “row”, “cow”, “ ow”]
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r is a regular expression that says

match an string consisting of

3 characters, where the first character

is anything and  the next 2 characters

are ‘o’ and ‘w’ exactly
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RubyLabs: Pattern

• A (sentence) Pattern is a mapping from a 

regular expression to a set of 1 or more 

responses.

• Example:

>> p1 = Pattern.new(“dog”, 

[“Tell me more about your pet”,

“Go on”]

=> dog: [“Tell me more about your 

pet”, “Go on”]
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creates a regular expression

based on the first argument

include

ElizaLab

More about Patterns

The apply method tries to match an input 

sentence to a regular expression. If it can, it 

returns one of supplied response strings.
>> p1.apply(“I love my dog.”)

=> “Tell me more about your pet.”

>> p1.apply(“My dog is really smart.”)

=> “Go on.”

>> p1.apply(“Much smarter than my cat.”)

=> nil 
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Groups

• We can specify a group so that any member will 

cause a match during a scan.

>> p2 = Pattern.new(“(cat|dog|bird)”,

[“Tell me more about your pet”, “Go on”]

>> p2.apply(“My dog is smelly.”)

=> “Go on.”

>> p2.apply(“My cat ate my bird.”)

=> “Tell me more about your pet.”

>> p2.apply(“I miss Polly a lot.”)

=> nil
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Placeholders

• We can use placeholders to store the part of a 

pattern that matches so we can use it in the 

response.

>> p = Pattern.new(“(cat|dog|bird)”)

>> p.add_response(“Tell me more about the $1”)

>> p.add_response(“A $1? Interesting.”)

>> p.apply(“A dog ate my homework.”)

=> “Tell me more about the dog.”

>> p.apply(“My cat ate my bird.”)

=> “A cat? Interesting.”
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Placeholders (cont’d)

>> p = Pattern.new(“I (like|love|hate) my 

(cat|dog|bird)”

>> p.add_response(“Why do you $1 your $2?”)

>> p.add_response(“Tell me more about your $2”)

>> p.apply(“I like my dog.”)

=> “Why do you like your dog?”

>> p.apply(“I hate my cat.”)

=> “Tell me more about your cat.”
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Wildcards

• We can use a wildcard symbol (.*) to match any 

number of characters.

>> p = Pattern.new(“I am afraid of (.*)”)

>> p.add_response(“Why are you afraid of $1?”)

>> p.apply(“I am afraid of ghosts”)

=> “Why are you afraid of ghosts?”

>> p.apply(“I am afraid of Tom”)

=> “Why are you afraid of Tom?”
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A Note About Pattern

• Pattern takes a string and converts it to a regular 

expression, adding some special characters.

\b word boundary i ignore case

>> p = Pattern.new(“dog”)

>> p.regexp => /\bdog\b/i

>> p = Pattern.new(“I like .*”)

>> p.regexp => /\bI like (.*)/i

>> p = Pattern.new(“.eat”)

>> p.regexp => /.eat\b/i
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Another Note About Pattern

• If you want to match against a character used as a 

special regular expression code, use \\

>> p = Pattern.new(“I like .*.”)

>> p.regexp => /\bI like (.*)./i

>> p = Pattern.new(“I like .*\.”)

>> p.regexp => /\bI like (.*)./i

>> p = Pattern.new(“I like .*\\.”)

>> p.regexp => /\bI like (.*)\./i
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Postprocessing

• To make things more realistic, we can replace 

personal pronouns with their opposites.

>> p = Pattern.new(“I am (.*)”, 

[“Are you really $1?”])

>> p.apply(“I am near my car”)

=> “Are you really near my car?”

>> p.apply(“I am annoyed at you”)

=> “Are you really annoyed at you?”
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Postprocessing (cont’d)

>> Eliza.post[“my”] = “your”

>> Eliza.post[“you”] = “me”

>> Eliza.post

=> {“my” => “your”, “you” => “me” }

>> p.apply(“I am near my car.”)

=> “Are you really near your car?”

>> p.apply(“I am annoyed at you.”)

=> “Are you really annoyed at me?”

>> p.apply(“I am sad, my my my.”)

=> "Are you really sad, your your your?"
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An associative array

like we used in 

Huffman trees.
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Preprocessing

• Preprocessing is used to transform part of a 

sentence before pattern matching is performed.
>> p = Pattern.new(“I am afraid of (.*)”)

>> p.add_response(“Why are you afraid of $1?”)

>> p.apply(“I’m afraid of ghosts”)

=> nil

>> Eliza.pre[“I’m”] = “I am”

>> p.apply(“I’m afraid of ghosts”)

=> “Why are you afraid of ghosts?”
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Algorithm for a Conversation

1. Perform any preprocessing on the sentence.

2. Break the sentence into words.

3. If there is a rule for a word, add the rule to a 

priority queue.

4. Try the rules in order of decreasing priority.

5. If a rule applies to the input sentence, apply 

postprocessing rules to placeholder variables 

and return the response.
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Eliza and the Turing Test

• Human (natural) language is very complex.

“You said I wouldn’t be afraid of horses

if I visited a state fair, but when I was there

I was chased by a pig, and now I’m having

nightmares about bacon.”

Natural language processors (NLPs) must use 

parsers to break a sentence down into its 

constituent parts (noun, verb, etc.) to 

determine an appropriate response.
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Eliza and the Turing Test

• Human (natural) language is very complex.

“The lions were lying down in the grass.”

A: Go on.

“They were quiet”

A: Why were the lions quiet?

Natural language processors (NLPs) must have 

memory to associate words (e.g. “they”) to 

words from previous sentences.
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Eliza and the Turing Test

• Human (natural) language is very complex.

“The elephant was huge.”

A: How big was it?

“The cat fell into the well.”

A: Was it able to get out?

NLPs must use semantics to assign meaning to 

certain phrases in order to generate 

appropriate responses.
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Eliza and the Turing Test

• Human (natural) language is very complex.

“The dog ran across the backyard while I 

waited on my patio.”

A: What happened when the dog reached the 

patio?

NLPs must establish inferences to add 

information to sentences that is not given but 

is assumed.
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