
5/2/2012

1

UNIT 14C
The Limits of Computing: 

Non-computable Functions

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
1

Problem Classifications

• Tractable Problems

– Problems that have reasonable, polynomial-
time solutions

• Intractable Problems

– Problems that may have no reasonable, 
polynomial-time solutions

• Noncomputable Problems

– Problems that have no algorithms at all to 
solve them

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
2



5/2/2012

2

The Barber Paradox

Suppose there is a town with one male 

barber; and that every man in the town 

keeps himself clean-shaven: some shave 

themselves and some are shaved by the 

barber. Only the barber can shave 

another man. The barber shaves all and 

only those men who do not shave 

themselves.

Does the barber shave himself?

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
3

Program Termination

• Can we determine if a program will terminate given 

a valid input?

• Example:

def mystery1(x)

while (x != 1) do

x = x – 2

end

end

– Does this algorithm terminate when x = 15?

– Does this algorithm terminate when x = 110?

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
4



5/2/2012

3

Another Example

def mystery2(x)

while (x != 1) do

if x % 2 == 0 then

x = x / 2

else

x = 3 * x + 1

end

end

– Does this algorithm terminate when x = 15?

– Does this algorithm terminate when x = 110?

– Does this algorithm terminate for any positive x?

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
5

The Halting Problem

• Does a universal program Q exist that can take 

any program P and any input I for program P 

and determine if P terminates/halts when run 

with input I?

• Alan Turing showed that such a universal 

program Q cannot exist.

– This is known as the Halting Problem.

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
6



5/2/2012

4

Proof by Contradiction

• Assume a program Q exists that requires a program P 

and an input I.

– Q determines if program P will halt when 

P is executed using input I.

– We will show that Q cannot exist by showing that if it did 

exist we would get a logical contradiction.

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
7

Q
HALT CHECKER

P

I

YES

NO

Q outputs YES

if P halts when run

with input I

Q outputs NO

if P does not halt

when run with input I

Compilers

• A compiler is a program that takes as its input 

a program that needs to be translated from a 

high-level language (e.g. Ruby) to a low-level 

language (e.g. machine language).

– In general, a program can process any data, so it 

can have a program as its input to process.

• Can a compiler compile itself?

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
8



5/2/2012

5

Proof (cont’d)

• Let R be a program that takes input S, where S is a 

program. 

• R asks the halt checker Q what happens if S runs with 

itself as input? 

• If Q answers that S will halt if it runs with itself as input, 

then R goes into an infinite loop (and does not halt).

• If Q answers that S will not halt if it runs with itself as 

input, then R halts.

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
9

How R Works

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
10

R
Q

HALT CHECKER

S

S

YES

NO

S
OK



5/2/2012

6

R gets evil

• What happens if R tests itself?

– If Q answers yes (R halts), then R goes into an 

infinite loop and does not halt.

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
11

R
Q

HALT CHECKER

R

R

YES

NO

R
OK

R gets evil

• What happens if R tests itself?

– If Q answers no (R does not halt), then R halts.

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
12

P
Q

HALT CHECKER

R

R

YES

NO

R
OK



5/2/2012

7

Contradiction

• No matter what Q answers about R, R does the 

opposite, so Q can never answer the halting 

problem for the specific program R. 

– Therefore, a universal halting checker Q cannot exist.

• We can never write a computer program that 

determines if ANY program halts with ANY input.

– It doesn’t matter how powerful the computer is.

– It doesn’t matter how much time we devote to the 

computation.

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
13

Contradiction in Real Life

15110 Principles of Computing, Carnegie 

Mellon University - CORTINA
14


