Motivation Abstract

* Obsidian is a new programming language for
blockchain smart contracts which includes a
sophisticated type system designed to catch

common classes of smart contract bugs at .
compile time. Carnegle Mellon

Traditionally, programmers had to write
hundreds of lines of code, compile it, and
then go back and fix the inevitable
compilation errors. This hampers developer
productivity, as the programmer may end
up working on disjoint sections of the code
before running the compiler. This project

* Editor integration can dramatically speed up IShan Bhargava

the process of learning a new type system. It (1Lbhargav) aims to improve the Obsidian developer
can present errors while the programmer is Michael Coblenz experience through editor integration
actively thinking about the code being (mcoblenz)

written

Obsidian Language Server
nede

stdin/stdout

./obsidianc

Editor integration is implemented for As the Language Server Protocol The compiler itself had to be modified
Microsoft’s Visual Studio Code, but works best with Node.js, a Node.js 10 support pa.rsmg/typecheckmg
other editors which support the server marshals the source code data programs YVh'Ch may not have been
Language Server Protocol are also from the editor to the compiler, and saved to d|§k, or Wh'.Ch may h.ave
compatible. the diagnostics reported from the dependen.a?s In a c.zllfferent directory
compiler back to the editor. than the file’s location.
Examples

| n addCar(int id, ng color, ing make,
r Cannot assign a value of contract Variable 'prevCar' is incompatibly typed as both
Option[Car@Unowned] to a variable that requires a 'Option[Car]@Some' and 'Option[Carl@Shared' after

value of contract Option[Car@Owned]. branch.

tom Missing specification for a value for the permission
bra variable s in asset ValueType@s@Owned where s is Owned
jin in type parameter Car.

No quick fixes available
No quick fixes available

switch prevCar {
case {
revert("Car with that ID already exists");

No quick fixes available cars = new [, r]l (new IntegerComparator());

insertCar(@, tomoko);
insertCar(1, brad);
insertCar(2, jinsoo);

m @ M.,m prevCar = cars.peek(key);
switch prevCar {
case Some {

