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Introduction

Game logic is a formal logic for proving safety and liveness
properties of first order games, which are a programming
language with discrete computations and adversarial
dynamics. Since any game that can be modeled by game
logic either has an Angel-win strategy or a Demon-win
strategy, a formal proof in Game Logic has several implica-
tions in its applications, by modeling pursuit-evasion and
defense-attack scenarios that are common in robotics and
cybersecurity.

This work investigates how we can model graph games,
taking Cops vs Robbers game as an example, in Game
Logic and prove specific theorems for common families of
graphs. The winning strategies for cops/robbers on these
families of graphs serve as a good starting point for different
variations of Cops vs Robbers game and can be combined
to solve for more complex graph models.

Cops vs Robbers Game

Cops vs Robbers (also known as Search and Evasion)
game has various implications in robotic graph search.
The simple graphs we choose can model the physical
environment, and the searcher/evader can model the
robots in their working conditions.

Cops and Robbers is a classic graph game that has been
widely discussed. The game rules are simple. Two players,
a cop and a robber, compete on a simple graph G. The
cop starts by choosing a start vertex, and then the robber
chooses a start vertex. After that, the two players move
to an adjacent node, by turns (starting with the cop). The
two players can see all the moves. The cop wins the game
if he catches the robber by being on the same vertex as
the robber at some point. The robber wins if he never gets
captured.

Model winning condition

Let G be our graph, V (G) be the set of vertices and E(G) be the set of edges. Each edge is
denoted (i, j). Denote the cop’s position c and the robber’s position r where c, r ∈ V (G).
Below is the syntax of dGL.

a; b ::= x := e | ?Q | a ∪ b | a; b | a∗ | ad

Define a game round CR as
{co := c; c := c′; ?coc ∈ E(G)}; {?(c 6= r); ro := r; r := r′; ?(ro, r) ∈ E(G)}d

Define the cop’s winning condition as

〈c := c0; ?c ∈ V (G); {r := r0; ?r ∈ V (G)}d;CR∗〉c = r

and the robber’s winning condition as

[c := c0; ?c ∈ V (G); {r := r0; ?r ∈ V (G)}d;CR∗]c 6= r

The 〈〉 here denotes Angel’s move, and [] denotes Demon’s move. The cop is Angel because
he will not end the game until he catches the robber and therefore determines the round of
the game. Since the game starts with the cop making decisions, he only needs ’one’ certain
strategy to win the game rather than ’every’ single scenario.

We can use the following example to illustrate. The cop is colored red and the robber is
colored yellow. The left two graphs are initialization, and the right two graphs are an example
game round. Although the graphs show only the assignment steps, the effect of tests are
implicitly restricting the moves to be legal.

Assignment: x := e. This is used to assign a new position for c or r.
Test: ?Q. A test does not change the game state, but fails immediately if Q is not passed.
Sequential: α; β. Sequential games are a reflection of time flow. The active player plays α
first, and then plays β.
Dual: αd. The active player switches (in our case to robber), and plays game α.
Repetition: α∗. The active player chooses when to terminate the game (in our case cop).

Proof Sketch

We will need the loop rule to understand the proof for robber-win graphs:

P ` J J ` [a]J J ` Q
P ` [a∗]Q

loop

Although in robber-win games, cops will never win no matter how long the game is played, we can break
down the ∗ rule by proving an invariant J always holds and guarantees the cop’s winning condition
cannot be met.

• Start by picking arbitrary vertex for the cop to start on. Pick a specific vertex for the robber.

• Prove that a game invariant J holds.

• After a game round of CR, prove that J holds.

• Prove that when J holds, we can prove c 6= r.

We will need ind rule to understand the proof for cop-win graphs:

G ` J(c) co = c, J(c), c > k ` 〈a〉(c < co ∧ J(c)) c ≤ k ∧ J(c) ` P
G ` 〈a∗〉P ind

The cop-win strategy must terminate in some indefinite number of steps. Therefore, we need an invariant
J to hold after each round of the game, and a variable c to be strictly decreasing until it reaches minimum
k. When c is at minimum the cop’s winning condition can be proved.

• Start by picking a vertex for the cop to start on. Pick arbitrary vertex for the robber.

• Prove that a game invariant J holds.

• After a game round of CR, prove that J holds and a variable v is strictly decreasing.

• Prove that once v reaches a lower bound, we can use J to prove c = r.

We can use the previous example to illustrate. In order to prove the 4-cycle is cop-win, we would set
J := r = c + 2 mod 4. To prove this holds after a game round, we can case on two possible cop moves
and move the robber respectively.

Remark: Each step above is a game logic rule, and the entire proof can be expanded into a formal proof
tree. For the sake of simplicity, we will omit the details and focus only on the key steps in the following
examples.

Examples

Graph Win Type Init Position Invariant Termination
Cycle Cn(n ≥ 4) Robber-win r = c + 2 mod n r = c + 2 mod n N/A
Path Pn Cop-win Anywhere r ≤ c c
Tree Tn Cop-win Anywhere True S(c, r) := {v : c /∈ p(v, r)}
DAG1 Robber-win ∀c,∃r, d(r, c) =∞ d(r, c) =∞ N/A
DAG2 Cop-win ∃c,∀r, d(r, c) 6=∞ True S(c, r) := {v : c /∈ p(v, r)}

Remark: DAG denotes Directed Acyclic Graph. We use a slightly modified version of the game, by allowing the cop and the robber to stay on the original position
on each round. DAG1 denotes the family of DAGs that has a vertex that can reach any other vertices. DAG2 denotes the family of DAGs that are not DAG1.
We defined p(u, v) to be the vertices on the path from u to v. Since this is only used on acyclic graphs, this path is unique.

Conclusion

We have used Game Logic to prove the winning strategies for cycles, paths, trees, DAGs and chordal
graphs (for simplicity omitted here). These examples can lead to further work on investigating more
complex graph models and game variations to better model real-life conditions.
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