Bi-criteria Algorithms for *`p***-Low Rank Approximation**

Arvind Mahankali, Prof. David Woodruff (Advisor)

Carnegie Mellon University

Problem

We study the problem of ℓ_p -low rank approximation. That is, given $k \in$ $\mathbb{N}, \alpha \geq 1$ and a matrix $A \in \mathbb{R}^{n \times d}$, the goal is to find a matrix B of small rank such that

- Reduces space needed to store a matrix
- Reduces time needed to multiply a matrix by a vector
- Applications in machine learning, computer vision, information retrieval
- ℓ_p -norm loss is more robust than the more standard ℓ_2 -norm loss

$$
||A - B||_p \le \alpha \cdot \min_{A_k \text{ rank } k} ||A - A_k||_p
$$

- Column Subset Selection [\[5\]](#page-0-0): Gives an *O*(*k* log *k*)-approximation, with rank $O(k \log n)$, in polynomial time.
- Guessing a Sketch [\[1\]](#page-0-1): Gives a $(1 + \varepsilon)$ -approximation, with rank k , in $n^{\text{poly}(k/\varepsilon)}$ time.

We allow our solution *B* to have rank greater than *k*, and a solution to the above problem is called an *α-approximation*.

Motivation

Previous Results

This was shown in [\[4\]](#page-0-2) for $p = 1$, and we extend it to $p \in [1, 2)$ using similar techniques.

We now give an algorithm for ℓ_p -low rank approximation that makes use of column subset selection.

Let $A \in \mathbb{R}^{n \times d}$ and $k \in \mathbb{N}$. Then, there is an algorithm which runs in polynomial time and returns $U \in \mathbb{R}^{n \times r}$, $V \in \mathbb{R}^{r \times d}$ such that $r =$ *O*(*k*poly(log *n*)) and with high probability,

> $||UV - A||_p ≤ O(k)$ $\frac{1}{p}-\frac{1}{2}$ $\frac{1}{2}$ poly $(\log k))$ min A_k rank k $\|A - A_k\|_p$

Column Subset Selection Lower Bound

We first show that the column subset selection approach of [\[5\]](#page-0-0) cannot do too well.

Column Subset Selection Lower Bound

Let $A \in \mathbb{R}^{n \times d}$, $k \in \mathbb{N}$, and $c > 0$. Then, an algorithm for ℓ_p -low rank approximation that returns $\hat{A} = UV$, where $U \in \mathbb{R}^{n \times r}$ and $V \in \mathbb{R}^{r \times d}$, and the columns of U are columns of A , cannot achieve better than an *O*(*k* $\frac{1}{p}$ ⁻¹⁻²^{-*c*}</sup>) approximation factor, unless $r = \Omega(n)$.

• Sample $t = O(k \text{poly}(\log k))$ columns uniformly at random, which will be included in *U*, and discard the $\Omega(d)$ remaining columns of *A* which have the lowest regression cost against these *t* columns. Repeat this step $O(\log d)$ times and take the sample for which the $\Omega(d)$ discarded columns have the smallest regression cost.

• Then, recurse — consider *A'* without the $\Omega(d)$ discarded columns or the sampled columns, and repeat the above process.

We give a sketch of the analysis — using the reasoning given here gives a $^{\frac{1}{2}}$ poly(log *d*)-approximation algorithm, and a refined version of this analysis $^{\frac{1}{2}}$ poly(log *k*) approximation factor. Let B_0 be a column 2 $\frac{t}{2}$ approximation to *B*, with approximation factor $^{\frac{1}{2}}$ [\[4\]](#page-0-2). Such a subset *S* can be constructed by sampling the columns of

Column Subset Selection Algorithm

Column Subset Selection Upper Bound

Column Subset Selection Algorithm - Continued

The algorithm is as follows:

Analysis of Column Subset Selection Algorithm

min *U,V* $||SUV - S(A – B)||_1$

Rounding the columns of $S(A-B)$ to a $\frac{1}{\text{poly}(k)}$ $\frac{1}{\text{poly}(k)\log(d)}$ -net leads to our conclusion — the net has $(\log d)^{\text{poly}(k)}$ distinct elements, up to scaling, and rounding leads to an additive error of $\frac{\|S(A-B)\|_1}{\text{poly}(k)\log(d)} = O(1) \min_{A_k \text{ rank } k} \|A - A_k\|_1$.

This algorithm makes use of a rounding procedure similar to the one used in the analysis of our $O(1)$ -approximation algorithm. In order to force the rank to be $O(k)$, we use polynomial optimization.

k $\frac{1}{p}$ — $\frac{1}{2}$ leads to the desired *k* $\frac{1}{p} - \frac{1}{2}$ sample of size t , and A_i be another uniformly random column of A . Consider the new matrix $B = [B_0, A_i]$. Then, there exists a column subset of size $\frac{t}{2}$ which spans a good rank-*t O*(*k* $\frac{1}{p}$ — $\frac{1}{2}$ *B* according to the column Lewis weights [\[2\]](#page-0-3) of V^* , where U^*V^* is the best rank-*k* approximation to *B*. Note that V^* is difficult to directly compute efficiently, but we can still reason about this sampling procedure as follows. With constant probability, the probability on the column A_i (under the distribution given by the Lewis weights of V^*) is small, meaning it is not chosen with constant probability. In addition, with constant probability, the column subset of *B* obtained by sampling according to the Lewis weights of V^* achieves a small regression cost on A_i , even conditioned on A_i not being a member of the subset. Hence, by Markov's inequality, a small regression cost is achieves on $\Omega(d)$ columns of *A*. By repeating this sample procedure with replacement, *O*(log *d*) times, we can boost the success probability and finally union bound over the different samples.

Reduction to *k***-Median**

O(1)**-Approximation Algorithm via** *k***-Median**

Let $A \in \mathbb{R}^{n \times d}$ and $k \in \mathbb{N}$. Then, there is an algorithm that runs in polynomial time and returns \hat{A} such that $r = (\log d)^{\text{poly}(k)}$ and

 $||\hat{A} − A||_1 ≤ O(1)$ min A_k rank k $||A_k - A||_1$

with constant probability.

Our algorithm is as follows. First, we obtain a $\text{poly}(k) \log(d)$ -approximation *B* with rank *k* in polynomial time using an algorithm from [\[4\]](#page-0-2). Then, we apply an $O(1)$ -approximation algorithm for *k*-median in the ℓ_1 distance, which was given in [\[3\]](#page-0-4), to $A - B$, with the desired number of centers being $(\log d)^{\text{poly}(k)}$. Let M_i be the center that is closest to the i^{th} column of $A - B$ — then, we return $B + M$, where M is the matrix whose columns are the M_i .

Analysis of *O*(1)**-Approximation Algorithm**

A key point in the analysis is that there is an approximation for *A*−*B* with at most $(\log d)^{\text{poly}(k)}$ distinct columns, and hence it suffices to solve the *k*-median problem with this number of centers. We can show this by multiplying the objective by a carefully chosen Lewis weight sampling matrix S with $poly(k)$ rows. The new objective becomes

$O(\log d)$ -Approximation Algorithm with rank $O(k)$

O(log *d*)**-Approximation Algorithm**

Let $A \in \mathbb{R}^{n \times d}$ and $k \in \mathbb{N}$. Then, there is an algorithm that runs in time $2^{2^{poly(k)}}$ poly(*nd*) and returns \hat{A} with rank $O(k)$ such that

> $||\hat{A} − A||_1 ≤ O(log d)$ min A_k rank k $||A_k - A||_1$

Acknowledgements

Arvind Mahankali is very grateful to his advisor, Prof. David Woodruff, for patiently introducing him to theoretical computer science research.

References

[1] Frank Ban, Vijay Bhattiprolu, Karl Bringmann, Pavel Kolev, Euiwoong Lee, and David P. Woodruff.

A PTAS for *l*p-low rank approximation. In *Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019*, pages

[2] Michael B. Cohen and Richard Peng. *l*_p row sampling by lewis weights. *CoRR*, abs/1412.0588, 2014.

Sublinear time algorithms for metric space problems. In *Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, May 1-4, 1999, Atlanta, Georgia, USA*, pages 428–434, 1999.

- 747–766, 2019.
-
- [3] Piotr Indyk.
- 2017.
-

[4] Zhao Song, David P. Woodruff, and Peilin Zhong. Low rank approximation with entrywise l_1 -norm error. In *Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19-23, 2017*, pages 688–701,

[5] Zhao Song, David P. Woodruff, and Peilin Zhong. Towards a zero-one law for column subset selection. In *Advances in Neural Information Processing Systems*, pages 6120–6131, 2019.