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Problem

We study the problem of `p-low rank approximation. That is, given k ∈
N, α ≥ 1 and a matrix A ∈ Rn×d, the goal is to find a matrix B of small rank
such that

‖A−B‖p ≤ α · min
Ak rank k

‖A− Ak‖p

We allow our solution B to have rank greater than k, and a solution to the
above problem is called an α-approximation.

Motivation

• Reduces space needed to store a matrix
• Reduces time needed to multiply a matrix by a vector
• Applications in machine learning, computer vision, information retrieval
• `p-norm loss is more robust than the more standard `2-norm loss

Previous Results

• Column Subset Selection [5]: Gives an O(k log k)-approximation, with
rank O(k log n), in polynomial time.
•Guessing a Sketch [1]: Gives a (1 + ε)-approximation, with rank k, in
npoly(k/ε) time.

Column Subset Selection Lower Bound

We first show that the column subset selection approach of [5] cannot do too
well.

Column Subset Selection Lower Bound

Let A ∈ Rn×d, k ∈ N, and c > 0. Then, an algorithm for `p-low rank
approximation that returns Â = UV , where U ∈ Rn×r and V ∈ Rr×d,
and the columns of U are columns of A, cannot achieve better than an
O(k

1
p−

1
2−c) approximation factor, unless r = Ω(n).

This was shown in [4] for p = 1, and we extend it to p ∈ [1, 2) using similar
techniques.

Column Subset Selection Algorithm

We now give an algorithm for `p-low rank approximation that makes use of
column subset selection.

Column Subset Selection Upper Bound

Let A ∈ Rn×d and k ∈ N. Then, there is an algorithm which runs
in polynomial time and returns U ∈ Rn×r, V ∈ Rr×d such that r =
O(kpoly(log n)) and with high probability,

‖UV − A‖p ≤ O(k
1
p−

1
2poly(log k)) min

Ak rank k
‖A− Ak‖p

In light of the lower bound, this is essentially optimal (up to log factors).

Column Subset Selection Algorithm - Continued

The algorithm is as follows:
• Sample t = O(kpoly(log k)) columns uniformly at random, which will be
included in U , and discard the Ω(d) remaining columns of A which have
the lowest regression cost against these t columns. Repeat this step
O(log d) times and take the sample for which the Ω(d) discarded columns
have the smallest regression cost.
• Then, recurse — consider A′ without the Ω(d) discarded columns or the
sampled columns, and repeat the above process.

Analysis of Column Subset Selection Algorithm

We give a sketch of the analysis — using the reasoning given here gives a
k

1
p−

1
2poly(log d)-approximation algorithm, and a refined version of this analysis

leads to the desired k
1
p−

1
2poly(log k) approximation factor. Let B0 be a column

sample of size t, and Ai be another uniformly random column of A. Consider
the new matrix B = [B0, Ai]. Then, there exists a column subset of size t

2
which spans a good rank- t2 approximation to B, with approximation factor
O(k

1
p−

1
2) [4]. Such a subset S can be constructed by sampling the columns of

B according to the column Lewis weights [2] of V ∗, where U∗V ∗ is the best
rank-k approximation to B.
Note that V ∗ is difficult to directly compute efficiently, but we can still rea-
son about this sampling procedure as follows. With constant probability,
the probability on the column Ai (under the distribution given by the Lewis
weights of V ∗) is small, meaning it is not chosen with constant probability.
In addition, with constant probability, the column subset of B obtained by
sampling according to the Lewis weights of V ∗ achieves a small regression cost
on Ai, even conditioned on Ai not being a member of the subset. Hence, by
Markov’s inequality, a small regression cost is achieves on Ω(d) columns of
A. By repeating this sample procedure with replacement, O(log d) times, we
can boost the success probability and finally union bound over the different
samples.

Reduction to k-Median

O(1)-Approximation Algorithm via k-Median

Let A ∈ Rn×d and k ∈ N. Then, there is an algorithm that runs in
polynomial time and returns Â such that r = (log d)poly(k) and

‖Â− A‖1 ≤ O(1) min
Ak rank k

‖Ak − A‖1

with constant probability.

Our algorithm is as follows. First, we obtain a poly(k) log(d)-approximation
B with rank k in polynomial time using an algorithm from [4]. Then, we apply
an O(1)-approximation algorithm for k-median in the `1 distance, which was
given in [3], to A−B, with the desired number of centers being (log d)poly(k).
Let Mi be the center that is closest to the ith column of A − B — then, we
return B + M , where M is the matrix whose columns are the Mi.

Analysis of O(1)-Approximation Algorithm

A key point in the analysis is that there is an approximation for A−B with at
most (log d)poly(k) distinct columns, and hence it suffices to solve the k-median
problem with this number of centers. We can show this by multiplying the
objective by a carefully chosen Lewis weight sampling matrix S with poly(k)
rows. The new objective becomes

min
U,V
‖SUV − S(A−B)‖1

Rounding the columns of S(A−B) to a 1
poly(k) log(d)-net leads to our conclusion

— the net has (log d)poly(k) distinct elements, up to scaling, and rounding leads
to an additive error of ‖S(A−B)‖1

poly(k) log(d) = O(1) minAk rank k ‖A− Ak‖1.

O(log d)-Approximation Algorithm with rank O(k)

O(log d)-Approximation Algorithm

Let A ∈ Rn×d and k ∈ N. Then, there is an algorithm that runs in time
22poly(k)poly(nd) and returns Â with rank O(k) such that

‖Â− A‖1 ≤ O(log d) min
Ak rank k

‖Ak − A‖1

This algorithm makes use of a rounding procedure similar to the one used in
the analysis of our O(1)-approximation algorithm. In order to force the rank
to be O(k), we use polynomial optimization.
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