Problem Description

Sub-Gaussian distributions [1] as the
Gaussian distribution are commonly
taught, studied, and assumed. Because of
the light tails, it is trivial to accurately
estimate the mean with bounds by
calculating the sample mean. Because of
the light tails, it is possible to estimate the
mean quite simply with bounds.

While sub-Gaussian distributions are
commonly studied, heavier tailed
distributions are more common in the real
world. For example, the Cauchy and
Pareto distributions. In this case, we
cannot make the same assumptions (such
as finite variance) and therefore cannot
use theorems such as Hoeffding’s
Inequality as they require finite variance.
In the event that the variance is undefined
or infinity, it is impossible to provide a
bound on the emperical mean. For
example, in the case of the Cauchy
distribution, the sample mean follows a
cauchy distribution as well. Because the
Cauchy distribution is unbounded, there
are no bounds on the sample mean and
thus we cannot give any bounds on our
error.
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Median of Means Method

One surprisingly simple method for this is the median of means [2]. In this, the data is
randomly split up into bins and the emperical mean of each bin is calculated. The mean
estimate is the median of these means. A bound for this can be found in Theorem 4.1 in the
paper cited above. Specifically, they claim that the estimator is sub-Gaussian, allowing it to

have the properties and therefore described above. It is able to run in O(nlog(n)) time.

MT Method

The MT estimator is proposed by Cherapanamijeri [3]. The algorithm simply bins the data
and then takes the mean of each of the bins. The algorithm sets the initial expectation
estimate to be the zero vector and then uses gradient descent to calculate the estimate. In
order to do estimate the distance from the true mean and the gradient, it uses the
optimization problem it names MT. MT specifically attempts to find the direction that
maximizes the number of points a certain distance from the mean estimate. This direction is
then the gradient used when updating the mean estimate. The process continues for a fixed
amount of time. The runtime complexity of the overall algorithm is simply O(n* + n?d)
where n is the number of data points and d is the number of dimensions. A bound for the

estimate can be found in Theorem 1in the paper cited above.

Conclusion

While the mean of sub-Gaussian distributions can be estimated using the sample mean, it is
not as simple for heavier tailed distributions. In order to have bounded estimates, more
complicated methods must be used such as the median of means and MT methods. While
these methods are computationally more expensive (the MT method specifically), it allows
us to have bounds on the error in our estimate.
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