Sub-Synchronizing Shared Session Types in Nomos
Ishani Santurkar; Advisors: Ankush Das and Jan Hoffmann

Nomos

* Smart contracts are programs that facilitate the
execution of a transaction between distrusting
parties.

* Nomos is a smart contract programming language
that:

* Statically guarantees protocol adherence
using session types.

* Automatically infers gas (execution cost)
bounds.

* Enforces linearity to prevent duplication of
assets like money.

Auction Contract

* An auction contract runs in two phases:

Phase | %

RUNNING - Bidder |
users send bids
to contract %
Bidder 2
Bidder 3
% Bid |
Phase 2 Bidder |
ENDED - -
winner -
collects lot, L ——
while others Bidder 2
receive bids

Bidder 3 status: ended

Auction Type in Nomos

* The auction process communicates with clients
according to the auction session type below.

send status offer choice receive id
) o recurse
of auction of bidding and money
| auction ZTEQZ {runin : &{id id R oney —o laction,
cancel : c-21lfauction},
ended : &{collect : id —» ®{won : lot ® ,L[S_auction,
lost : mo ey ® >'/liauction},
cancel : »*! [Pauctidn}}
A 4
offer choice send result send send back
to collect of bidding lot bid

Equi-Synchronizing Session Types

* An auction is a shared session type - it offers a
service to multiple clients.
* To ensure mutual exclusion, a client must:
* acquire the shared channel
* communicate with it in private
* release the shared channel
* Equi-synchronizing requirement — user must
release contract at the same type as it was
acquired at.

contract is released
at type auction

contract is acquired
at type auction

2 @ {running : &{bid : id — money —o lEauction,
cancel : a-“lfauction},

ended : &{collect : id —» ®{won : lot ® liauction,

lost : money ® DP/lEauction},

auction = T}«

cancel : >°! |Yauction}}

Sub-Synchronizing Session Types

* Allows shared channel to be released at a subtype
of its original type.

* This can be used to signal phases of an auction from
its type.

* For example, on completing its running phase, a
running_auction can transition to its subtype
ended_auction which does not accept new bids.

running_auction =T€L’ @{running : &{bid : id — money —olf running_auction,
cancel :lf running_auction}
ended : &{collect : id — @&{won : lot® ‘Lt ended_auction,

lost : money® lf’_ ended_auction},

cancel :lSL’ ended_auction}}
ended_auction :TE ®{ended : &{collect : id — ®&{won : lo 1? ended_quction,
lost : mondy® J,E * ded_auction},

cancel :li ended_auction}}

running_auction transitions to

ended_ auction in these cases

Contributions

In this project, I:

* Developed rules for the algorithmic subtyping of
Nomos, increasing the flexibility of its type system
and allowing it to express a wider range of
programs.

* Implemented the subtyping and sub-synchronizing
algorithms in the Nomos type-checker.

* Proved type-safety of the extended system.

Future Work

* Extending subtyping to functional constructs in
Nomos.

* Adding polymorphism to Nomaos.

* Investigating the relationship between
polymorphism and subtyping.



