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Nomos

* Smart contracts are programs that facilitate the
execution of a transaction between distrusting
parties.

* Nomos is a smart contract programming language
that:

* Statically guarantees protocol adherence
using session types.

* Automatically infers gas (execution cost)
bounds.

* Enforces linearity to prevent duplication of
assets like money.

Auction Contract

* An auction contract runs in two phases:
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Auction Type in Nomos

* The auction process communicates with clients
according to the auction session type below.
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Equi-Synchronizing Session Types

* An auction is a shared session type - it offers a
service to multiple clients.
* To ensure mutual exclusion, a client must:
* acquire the shared channel
* communicate with it in private
* release the shared channel
* Equi-synchronizing requirement — user must
release contract at the same type as it was
acquired at.
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Sub-Synchronizing Session Types

* Allows shared channel to be released at a subtype
of its original type.

* This can be used to signal phases of an auction from
its type.

* For example, on completing its running phase, a
running_auction can transition to its subtype
ended_auction which does not accept new bids.
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running_auction transitions to

ended_ auction in these cases

Contributions

In this project, I:

* Developed rules for the algorithmic subtyping of
Nomos, increasing the flexibility of its type system
and allowing it to express a wider range of
programs.

* Implemented the subtyping and sub-synchronizing
algorithms in the Nomos type-checker.

* Proved type-safety of the extended system.

Future Work

* Extending subtyping to functional constructs in
Nomos.

* Adding polymorphism to Nomaos.

* Investigating the relationship between
polymorphism and subtyping.



