
Command-Line Flags as Types
Harrison Grodin, advised by Robert Harper

Background
- Software imposes requirements on the world:

- effects/primitives
- system/hardware requirements
- library dependencies

- Usually, expressivity and usability are at odds.
- Want to specify requirements in the program, but don’t

want to manually propagate resources.
- Each requirement can be a command-line flag identifying

a language.
- Sterling and Harper recently developed a synthetic

generalization of the ML phase distinction via topos theory. We
will adapt this approach, representing each command-line
flag via a phase.

References
1. J. Sterling and R. Harper. “Logical Relations as Types:

Proof-Relevant Parametricity for Program Modules”. (2021)
2. J. Sterling and R. Harper. “A metalanguage for multi-phase

modularity”. (2021)
3. Y. Niu, J. Sterling, H. Grodin, and R. Harper. “A cost-aware logical

framework”. (2021)

Goal
Develop a framework for specifying programming languages
involving compiler flags via phases, and use it to understand and
consolidate accounts of features and extensions common in
ML-style programming languages.

Example 2: Algebraic Effects

Flags, Phases, and Types
- Define a poset of flags.
- Then, define phases as lower sets of flags.

- Define type system relative to a phase.

Operational Semantics
- For each flag, define an operational semantics.
- Programmers will ultimately select one flag relative to which

code will be typechecked and run.

Example 1: Simple Effects

Combining Effects

Pure, Error, and State

Library Imports

Hardware Resources

- Linux-only algorithm has type .

Debugging Tools

Example 3: Classical Logic

Future Work
- Allow types to be induced by flags
- Flag poset evolution
- Dynamic flag allocation?
- Flag handlers?
- Multi-language optimization (e.g., GPU)
- Coeffects
- Closed modality/equality implementation

