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We have presented a core language in which linear, 
multilinear, and nonlinear types coexist to achieve the 
benefits of linearity without its restrictions.

We explored the advantages of linear futures through 
experimentation in SML and Rast, including algorithmic 
speedups with pipelining, garbage collection, and 
granularity control. Then, we developed a type system 
that begins to reconcile practicality with efficient 
parallelism. 

This language retains the linear facets of Rast, including 
ergometric types, but also allows for non-linear programs. 
We added reference counting by distinguishing between 
addresses and variables and introducing a way to split 
potential. This allows us to write most programs purely 
within the multilinear setting and enjoy the benefits of 
linearity.

We developed the statics and dynamics of such a language 
and proved its safety (progress and preservation). 

Conclusion

There are many avenues of further research that we hope 
to explore, largely centered around the usability of the 
language described.
• Implementation: Implementing this language would 

allow us to demonstrate its use practically; we have not 
yet considered the details of granularity in an adjoint 
setting and would need to experiment with running 
actual programs.

• Surface Syntax: This is intended as an intermediate 
language: we anticipate that we will be able to compile a 
functional language down to this language (with most 
operations remaining sequential, but some occurring in 
parallel), and then compile this language to machine 
code. We leave the details of the surface syntax to future 
work.

• Cost annotations could be generated automatically 
from a source language in the style of RAML [9] or 
partially reconstructed from a source language in 
the style of Rast.

• Automation: Ideally, we will eventually be able to 
automatically infer when copy/drop needs to be called 
so as to prevent users from having to identify these 
locations manually.

• We hope to re-introduce arithmetic refinements, 
which exist in Rast but which we omitted here for 
simplicity. This would allow us to track additional 
information about data structures that provides a 
more precise understanding of potential.

• We might wish to explore ways of further 
automating granularity control; in our current 
work, users still have to experiment with grain 
values manually. For instance, we can experiment 
with machine learning [6] or oracle-guided [1] 
techniques.

Practical Use and Future Directions
Goal: allow programmers to write efficient parallel code in 
a functional language without significant overheads. 

Prior work has focused primarily on fork-join programs, in 
which computations split into branches and later 
synchronize. Here, we instead consider a form of 
parallelism known as futures, which are more general but 
more difficult to implement efficiently. Futures involve 
spawning multiple threads of computation that execute 
simultaneously. 

However, the efficiency of parallel programs is limited by a 
few key factors:

1. Granularity: the cost of starting and scheduling parallel 
computations can outweigh the benefits, especially on 
inexpensive computations. A programmer must decide 
when it is worthwhile to compute something in parallel.

2. Garbage Collection: prior work suggests that one of the 
bottlenecks to efficient parallelism is in the garbage 
collector – specifically, how memory gets “cleaned up” 
once it is done being used.

We address these challenges by considering a linear, 
resource-aware system inspired by session types, and 
then generalize to programs without linearity restrictions. 
In our language, linear, multilinear, and nonlinear types 
coexist to reap the benefits of linearity.

This language serves as a basis for an efficient, general, 
and expressive implementation of functional futures.

Motivation

PARALLELISM. When multiple computations do not rely on 
one another, we can run them at the same time (instead of 
waiting for one to finish before starting the other). Many 
algorithms have substantially lower cost (i.e., they run 
faster) when run in parallel.

FUTURES. A future begins a computation and immediately 
moves on to the next steps of a program. This allows a 
program to simultaneously compute both the expression 
in the future and the next instructions without waiting for 
the earlier expression to finish. 

ERGOMETRIC TYPES. We can augment our type system with 
ergometric types to track (statically) the cost that will be 
incurred at a given step; in executing that step, we use up 
some amount of “potential.” Without sufficient potential, a 
program will fail to typecheck.

LINEARITY. Linearity enforces a restriction that each piece 
of data must be used exactly once. This severely restricts 
the programs we can write, but offers efficiency benefits 
for futures.

Background Information

1. Experiment with futures in SML and in Rast [4].
2. Generalize to mixed linear/nonlinear framework.
3. Add reference counting to allow most programs to be 

written multilinearly, including potential.

Outline of Research

Linear Futures

• 2 modes: l, linear, and u, unrestricted [2]. Unrestricted 
data can’t rely on linear data or have potential.

• Processes read from and write to typed addresses.
• The state of a system is represented by a configuration, 

containing cells (holding values or continuations) and 
threads to execute.

• We annotate typing judgments and dynamics steps with 
potential required.

A Linear/Nonlinear Type System

Linearity can improve efficiency for parallel programs 
with futures. We experimented with both SML and Rast (a 
linear, resource-aware, session-typed language).

Asymptotic Benefits:
• Linear futures can improve the theoretical asymptotic 

efficiency of pipelined programs [3].
Garbage Collection:
• Linear data can be easily garbage collected, since 

memory can be deallocated immediately after use [8]. 
Granularity Control:
• With ergometric types, we can calculate work at the 

type level and automate granularity control decisions.
• Based on preliminary experimentation in Rast, we can 

aggregate the work of multiple sequentially-executing 
processes to identify when to execute in parallel, and 
thus achieve speedups on pipelined programs

Example Speedup on Prime Sieve in Rast Summary of Results (Max Speedup vs. Sequential)

Conclusion: We don’t want to enforce a linearity 
restriction, because it’s infeasible to write purely linear 
programs, but we still want linearity benefits.

Multilinearity
LIMITATION OF ADJOINT SYSTEM: for any data that is 
unrestricted, we enjoy no linearity benefits => treat as 
much of the language as possible as linear, only using the 
unrestricted mode when strictly necessary

• We can inductively copy or drop any purely positive, 
linear cell or a shifted shared cell: multilinear types

• Instead of using shared cells, in most cases, we can just 
use a linear cell and copy/drop it as necessary

• Because inductive copying/dropping is expensive and 
tedious, introduce reference counting: addresses can 
have multiple clients, which share potential

• Many variables can refer to the same address; 
substitutions are stored in closing 
environments

• Define splitting and dropping definitions for multilinear 
types

• Still allows easy garbage collection, precise potential 
annotations, and algorithmic advantages => benefits of 
linearity without restrictions

Dynamics for aliasing and dropping: modify reference 
count and update substitution closure 𝜂

Invariants
• Reference count = number of clients
• Total potential in cell = sum of potential seen by clients

Safety

A valid configuration is either complete, with no more threads, or takes 
a step to a new configuration (and has sufficient potential to do so).

When a configuration takes a step (using up some potential), the result 
remains well-typed, providing the same addresses as the original.
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