
Efficient Parallelism Through
Ergometric, Multilinear Futures

Aditi Gupta

Advisor: Prof. Frank Pfenning, Computer Science Department

We have presented a core language in which linear,
multilinear, and nonlinear types coexist to achieve the
benefits of linearity without its restrictions.

We explored the advantages of linear futures through
experimentation in SML and Rast, including algorithmic
speedups with pipelining, garbage collection, and
granularity control. Then, we developed a type system
that begins to reconcile practicality with efficient
parallelism.

This language retains the linear facets of Rast, including
ergometric types, but also allows for non-linear programs.
We added reference counting by distinguishing between
addresses and variables and introducing a way to split
potential. This allows us to write most programs purely
within the multilinear setting and enjoy the benefits of
linearity.

We developed the statics and dynamics of such a language
and proved its safety (progress and preservation).

Conclusion

There are many avenues of further research that we hope
to explore, largely centered around the usability of the
language described.
• Implementation: Implementing this language would

allow us to demonstrate its use practically; we have not
yet considered the details of granularity in an adjoint
setting and would need to experiment with running
actual programs.

• Surface Syntax: This is intended as an intermediate
language: we anticipate that we will be able to compile a
functional language down to this language (with most
operations remaining sequential, but some occurring in
parallel), and then compile this language to machine
code. We leave the details of the surface syntax to future
work.

• Cost annotations could be generated automatically
from a source language in the style of RAML [9] or
partially reconstructed from a source language in
the style of Rast.

• Automation: Ideally, we will eventually be able to
automatically infer when copy/drop needs to be called
so as to prevent users from having to identify these
locations manually.

• We hope to re-introduce arithmetic refinements,
which exist in Rast but which we omitted here for
simplicity. This would allow us to track additional
information about data structures that provides a
more precise understanding of potential.

• We might wish to explore ways of further
automating granularity control; in our current
work, users still have to experiment with grain
values manually. For instance, we can experiment
with machine learning [6] or oracle-guided [1]
techniques.

Practical Use and Future Directions
Goal: allow programmers to write efficient parallel code in
a functional language without significant overheads.

Prior work has focused primarily on fork-join programs, in
which computations split into branches and later
synchronize. Here, we instead consider a form of
parallelism known as futures, which are more general but
more difficult to implement efficiently. Futures involve
spawning multiple threads of computation that execute
simultaneously.

However, the efficiency of parallel programs is limited by a
few key factors:

1. Granularity: the cost of starting and scheduling parallel
computations can outweigh the benefits, especially on
inexpensive computations. A programmer must decide
when it is worthwhile to compute something in parallel.

2. Garbage Collection: prior work suggests that one of the
bottlenecks to efficient parallelism is in the garbage
collector – specifically, how memory gets “cleaned up”
once it is done being used.

We address these challenges by considering a linear,
resource-aware system inspired by session types, and
then generalize to programs without linearity restrictions.
In our language, linear, multilinear, and nonlinear types
coexist to reap the benefits of linearity.

This language serves as a basis for an efficient, general,
and expressive implementation of functional futures.

Motivation

PARALLELISM. When multiple computations do not rely on
one another, we can run them at the same time (instead of
waiting for one to finish before starting the other). Many
algorithms have substantially lower cost (i.e., they run
faster) when run in parallel.

FUTURES. A future begins a computation and immediately
moves on to the next steps of a program. This allows a
program to simultaneously compute both the expression
in the future and the next instructions without waiting for
the earlier expression to finish.

ERGOMETRIC TYPES. We can augment our type system with
ergometric types to track (statically) the cost that will be
incurred at a given step; in executing that step, we use up
some amount of “potential.” Without sufficient potential, a
program will fail to typecheck.

LINEARITY. Linearity enforces a restriction that each piece
of data must be used exactly once. This severely restricts
the programs we can write, but offers efficiency benefits
for futures.

Background Information

1. Experiment with futures in SML and in Rast [4].
2. Generalize to mixed linear/nonlinear framework.
3. Add reference counting to allow most programs to be

written multilinearly, including potential.

Outline of Research

Linear Futures

• 2 modes: l, linear, and u, unrestricted [2]. Unrestricted
data can’t rely on linear data or have potential.

• Processes read from and write to typed addresses.
• The state of a system is represented by a configuration,

containing cells (holding values or continuations) and
threads to execute.

• We annotate typing judgments and dynamics steps with
potential required.

A Linear/Nonlinear Type System

Linearity can improve efficiency for parallel programs
with futures. We experimented with both SML and Rast (a
linear, resource-aware, session-typed language).

Asymptotic Benefits:
• Linear futures can improve the theoretical asymptotic

efficiency of pipelined programs [3].
Garbage Collection:
• Linear data can be easily garbage collected, since

memory can be deallocated immediately after use [8].
Granularity Control:
• With ergometric types, we can calculate work at the

type level and automate granularity control decisions.
• Based on preliminary experimentation in Rast, we can

aggregate the work of multiple sequentially-executing
processes to identify when to execute in parallel, and
thus achieve speedups on pipelined programs

Example Speedup on Prime Sieve in Rast Summary of Results (Max Speedup vs. Sequential)

Conclusion: We don’t want to enforce a linearity
restriction, because it’s infeasible to write purely linear
programs, but we still want linearity benefits.

Multilinearity
LIMITATION OF ADJOINT SYSTEM: for any data that is
unrestricted, we enjoy no linearity benefits => treat as
much of the language as possible as linear, only using the
unrestricted mode when strictly necessary

• We can inductively copy or drop any purely positive,
linear cell or a shifted shared cell: multilinear types

• Instead of using shared cells, in most cases, we can just
use a linear cell and copy/drop it as necessary

• Because inductive copying/dropping is expensive and
tedious, introduce reference counting: addresses can
have multiple clients, which share potential

• Many variables can refer to the same address;
substitutions are stored in closing
environments

• Define splitting and dropping definitions for multilinear
types

• Still allows easy garbage collection, precise potential
annotations, and algorithmic advantages => benefits of
linearity without restrictions

Dynamics for aliasing and dropping: modify reference
count and update substitution closure 𝜂

Invariants
• Reference count = number of clients
• Total potential in cell = sum of potential seen by clients

Safety

A valid configuration is either complete, with no more threads, or takes
a step to a new configuration (and has sufficient potential to do so).

When a configuration takes a step (using up some potential), the result
remains well-typed, providing the same addresses as the original.

[1] Umut Acar et al. “Provably and practically efficient
granularity control”. PPoPP 2019.

[2] P. N. Benton. “A Mixed Linear and Non-Linear Logic”.
CSL 1994.

[3] Guy Blelloch and Margaret Reid-Miller. “Pipelining
with Futures”. TCS 1999.

[4] Ankush Das and Frank Pfenning. “Rast: Resource-
Aware Session Types with Arithmetic Refinements”. FSCD
2020.

[5] Ankush Das, Jan Hoffmann, and Frank Pfenning.
“Work Analysis with Resource-Aware Session Types”.
LICS 2018.

[6] Ankush Das and Jan Hoffmann. “ML for ML: learning
cost semantics by experiment”. TACAS 2017.

[7] Henry DeYoung, Frank Pfenning, and Klaas Pruiksma.
“Semi-Axiomatic Sequent Calculus”. FCSD 2020.

[8] Jean-Yves Girard and Yves Lafont. “Linear Logic and
Lazy Computation”. TAPSOFT 1987.

[9] Jan Hoffmann, Klaus Aehlig, and Martin Hofmann.
“Resource Aware ML”. CAV 2012.

[10] Klaas Pruiksma and Frank Pfenning. “Back to
Futures”. JFP 2022.

Selected References

SML Rast New Language

Nonlinear: practical
for a wide variety of
programs

Linearity restriction Adjoint – linear and
shared modes, with
reference counting

Manual granularity
control for each
computation

Ergometric types:
automated
granularity control

Potential
annotations for
multilinear
programs

Challenging garbage
collection

Easy garbage
collection

Easy garbage
collection for
multilinear
programs

Futures
implemented on top
of original language

Natural
concurrency, built
into the language

Natural
concurrency, built
into the language

