Syntax and Hierarchy in Animal Behavioral Structure

Alan Lail, Leila Wehbe?4, Eric A. Yttri3*
IDepartment of Computational Biology, Carnegie Mellon University 2Department of Machine Learning, Carnegie Mellon University
3Department of Biological Sciences, Carnegie Mellon University, “*Center for Neural Basis of Cognition

Results I

Using a Markov Model, we are able to capture of syntax and
repetitive structure in behavior. Moreover, we design an
algorithmic procedure using grammar inference to derive a
set of behavioral motifs. These motifs are candidates for the
separable modules that make up a behavioral hierarchy. We
show that the set of motifs that best captures behavioral

variation are both infrequent and correlated.
J [ 5. The Search for Behavioral Motifs (cont.) } [5. The Search for Behavioral Motifs (cont.)}

Introduction

Neuroscientists and computer scientists, alike, have
long attempted to explain how the brain gives rise to
behavior. But doing so requires a careful dissection of
behavioral structure so that neuroscientists can align
descriptions of neural data alongside behavioral
observations.
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Objective Method

Our goal is to capture behavioral structure and gain Six mice were exposed to an open-field for one hour.
insight into the syntax that is associated with Using B-SOID, an open-source unsupervised
behavior. We are especially interested in algorithm for behavioral identification, we label
decomposing behavior into separable modules that videos of mice using eleven distinct behaviors. We
form a behavioral hierarchy. use these labels to study behavioral structure
through a Markov model and formal language.

} [2. Markovian Model of Behavior (cont.)} [ 4. A Behavioral Hierarchy

[ 1. Experimental Procedure

Behavior has a hierarchal structure where units of
behavior are composed of nested sub-units that are
stereotyped and correlated with each other.
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Open Field Task Example Frequent Motif
Six C57BL/6 mice were introduced to a novel 15
by 12 inch rectangular arena. Video recordings
were captured at 60 Hz with a 1280x720 video

camera.

A small distance between two fixed states i, j

indicates that sequences of the form:
[ >a —>j =>b —>i

Example Motif Shared Among Mice

J2a—-10->b-j
are probable where a, b are arbitrary
sequences of states. Figure 1 depicts how
behavioral states relate to each other.
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Example Motifs Unique to Mouse 1
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Pause = Nose Poke = Pause = Nose Poke = Orient Left

Pause > Nose Poke = Orient Right = Nose Poke
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Our distance metric (Boyd et al., 2021) is then:

subsequences

d(i,j) = —log(4;;)

Figure 2: (Left) Unique N-Gram growth grows sub-linearly with respect to
input indicating n-grams are repetitive (Right) Frequent N-Grams are
characterized by a small subset of N-Grams
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