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Background

Consider the problem of minimizing a function  over a set  

. 

Suppose we only have access to the function via a black-box (zeroth-order) 
oracle, which outputs a noisy estimate of the function when queried at any 

 

   

where  is a mean-zero random variable. The goal in zeroth-order optimization 
(ZOO) is to find an approximate minimizer of  while making as few queries to 
the oracle as possible. Hence, any ZOO algorithm makes a sequence of queries 

 and outputs some point  as a minimizer of . 

The performance of any ZOO technique is typically measured using of the 
following optimality criteria 

          (Simple Regret) 

           (Cumulative Regret).
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Applications

ZOO problems arise in a number of fields. For example, in machine learning, ZOO 
techniques are often used for hyper parameter tuning, where we need to tune 
the several ‘knobs’ of a statistical model’s architecture and identify the 
configuration which provides the best model [1]. Similarly, the problem of neural 
architecture search can also be formulated as a ZOO problem [2]. 

ZOO problems also appear in robust machine learning, where an adversary tries 
to make imperceptible changes (perturbations) to the inputs of a neural network 
with the goal of making the network misclassify its inputs [3, 4]. Defending 
against such attacks often requires ZOO techniques that can efficiently identify 
the worst possible perturbation for any given input, which in turn is used to train 
robust neural networks. 

Another application of ZOO is in engineering design where these techniques help 
expedite the search for promising designs [5]. More recently, ZOO algorithms 
have even been used to design better culinary recipes [6]!
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Existing techniques for solving zeroth-order optimization problems can be 
broadly be categorized into: 
1. Model-based: construct a surrogate model to approximate and optimize . 
2. Model-free: perform random walks through the search space. 

Our focus in this work was model-based approaches, which can further be broken 
down as ones: 
1. Assuming structure: assume that  is linear, (strongly) convex, etc. 
2. Assuming no structure: make no major structural assumptions and/or 

minimal ones like Lipschitz smoothness. 
Both these categories have their own downsides: structural assumptions made by 
the former often do not hold in practice, while techniques in the latter usually 
have high sample complexity. 

Neural networks can get the best of both worlds. Current neural ZOO techniques 
extend the classic Upper Confidence Bound (UCB) and Thompson Sampling (TS) 
approaches used in bandit optimization. The problem with these is that they 
either require posterior sampling or the construction of confidence bands for 
neural network predictions - which are non-trivial or computationally expensive.
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We propose a simple, greedy algorithm that, at each round  fits a 

neural network that yields zero square loss i.e. solving the following 
-regularized objective 

. 

Our goal with this algorithm is simulate posterior sampling as is the case in 
Bayesian optimization techniques like Gaussian processes. There are multiple 
possible neural networks that can fit the data as per the aforementioned 
objective (analogous to the multiple samples that can possibly be drawn from a 
posterior distribution). The value of the hyperparameter  (initialization 
variance for the neural network weight parameters) determines the nature of the 
final fit achieved, and acts as an implicit regularizer.  
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The benefits of using neural networks for 
this procedure are (1) we avoid defining a 
prior  (doing which often requires 
extensive domain knowledge for good 
performance), and (2) Gaussian processes 
are known to perform poorly in high 
dimensional settings, contrary to neural 
networks [7].

Some interesting directions to pursue following our findings are: 
1. Tuning  - the value of this hyperparameter determines the smoothness of 

the neural network (smaller values lead to smoother fits). This has a great 
impact on the quality of our surrogate approximation. Our implementation 
uses brute-force grid search. Ideally, we desire an automatic, more principled 
way to identifying the best value. For example, we could play a meta-bandit 
problem on top of our algorithm, solved using an Exp3-style approach [10]. 

2. Regret bounds - we need to provide explicit regret bounds that would allow 
for easier comparison with more baselines. Existing complexity measures like 
Eluder dimension [11] may be insufficient given the discrepancy witnessed 
between theory and our empirical performance. 

3. Benchmarking - our algorithm should be compared with a wider variety of 
baseline techniques in order to fully understand its merits (and flaws). 

4. Real-world experiments - we need to test our algorithm on real-world 
datasets, moving beyond synthetic experiments. 
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We present results from a subset of the experiments run on synthetic functions commonly used for black-box optimization benchmarking [8]. The comparison is 
between our algorithm above with Gaussian processes with the expected improvement criterion for optimizing the acquisition function (GP-EI) [9].
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As the dimensionality and complexity of the synthetic function increases, we generally see that the greedy technique outperforms GP-EI in terms of simple regret. 
There are instances where the greedy algorithm plateaus early - falling into a local minima and failing to exit it. A possible solution to this could be to add noise during 
the neural network optimization so as to encourage exploration. In terms of cumulative regret, the experiments we conducted were unable to assign a clear winner. 
GP-EI, unfortunately, does outperform our approach when it comes to wallclock time (running on a CPU). The bottleneck here is the fresh retraining of the neural 
network in each step: an alternative to explore here could be to perform a warm-start and/or only train the neural network fully at regular intervals.


