
NEURAL ZEROTH-ORDER OPTIMIZATION: EMPIRICAL STUDY AND INSIGHTS
Akhil Nadigatla

Advised by Biswajit Paria, Arun Suggala, Pradeep Ravikumar

Background

Consider the problem of minimizing a function over a set

.

Suppose we only have access to the function via a black-box (zeroth-order)
oracle, which outputs a noisy estimate of the function when queried at any

where is a mean-zero random variable. The goal in zeroth-order optimization
(ZOO) is to find an approximate minimizer of while making as few queries to
the oracle as possible. Hence, any ZOO algorithm makes a sequence of queries

 and outputs some point as a minimizer of .

The performance of any ZOO technique is typically measured using of the
following optimality criteria

 (Simple Regret)

 (Cumulative Regret).

f 𝒳 ⊆ ℝd

f* = min
x∈𝒳

f(x)

x ∈ 𝒳
y = f(x) + ξ

ξ
f

x1, …, xT ̂xT f

f(̂xT) − f*
1
T

T

∑
t=1

(f(xt) − f*)

Applications

ZOO problems arise in a number of fields. For example, in machine learning, ZOO
techniques are often used for hyper parameter tuning, where we need to tune
the several ‘knobs’ of a statistical model’s architecture and identify the
configuration which provides the best model [1]. Similarly, the problem of neural
architecture search can also be formulated as a ZOO problem [2].

ZOO problems also appear in robust machine learning, where an adversary tries
to make imperceptible changes (perturbations) to the inputs of a neural network
with the goal of making the network misclassify its inputs [3, 4]. Defending
against such attacks often requires ZOO techniques that can efficiently identify
the worst possible perturbation for any given input, which in turn is used to train
robust neural networks.

Another application of ZOO is in engineering design where these techniques help
expedite the search for promising designs [5]. More recently, ZOO algorithms
have even been used to design better culinary recipes [6]!

Existing Techniques

Algorithm & Motivation

Results

Future Work

References

Existing techniques for solving zeroth-order optimization problems can be
broadly be categorized into:
1. Model-based: construct a surrogate model to approximate and optimize .
2. Model-free: perform random walks through the search space.

Our focus in this work was model-based approaches, which can further be broken
down as ones:
1. Assuming structure: assume that is linear, (strongly) convex, etc.
2. Assuming no structure: make no major structural assumptions and/or

minimal ones like Lipschitz smoothness.
Both these categories have their own downsides: structural assumptions made by
the former often do not hold in practice, while techniques in the latter usually
have high sample complexity.

Neural networks can get the best of both worlds. Current neural ZOO techniques
extend the classic Upper Confidence Bound (UCB) and Thompson Sampling (TS)
approaches used in bandit optimization. The problem with these is that they
either require posterior sampling or the construction of confidence bands for
neural network predictions - which are non-trivial or computationally expensive.

f

f

We propose a simple, greedy algorithm that, at each round fits a

neural network that yields zero square loss i.e. solving the following
-regularized objective

.

Our goal with this algorithm is simulate posterior sampling as is the case in
Bayesian optimization techniques like Gaussian processes. There are multiple
possible neural networks that can fit the data as per the aforementioned
objective (analogous to the multiple samples that can possibly be drawn from a
posterior distribution). The value of the hyperparameter (initialization
variance for the neural network weight parameters) determines the nature of the
final fit achieved, and acts as an implicit regularizer.

t ∈ {1,…, T}
ℓ2

min
θt

L(θt) =
t

∑
t′ =0

(− (fθt∥t′
(xt′) − f(xt′))2 + ∥θt∥t′ ∥2

2)

σ2

The benefits of using neural networks for
this procedure are (1) we avoid defining a
prior (doing which often requires
extensive domain knowledge for good
performance), and (2) Gaussian processes
are known to perform poorly in high
dimensional settings, contrary to neural
networks [7].

Some interesting directions to pursue following our findings are:
1. Tuning - the value of this hyperparameter determines the smoothness of

the neural network (smaller values lead to smoother fits). This has a great
impact on the quality of our surrogate approximation. Our implementation
uses brute-force grid search. Ideally, we desire an automatic, more principled
way to identifying the best value. For example, we could play a meta-bandit
problem on top of our algorithm, solved using an Exp3-style approach [10].

2. Regret bounds - we need to provide explicit regret bounds that would allow
for easier comparison with more baselines. Existing complexity measures like
Eluder dimension [11] may be insufficient given the discrepancy witnessed
between theory and our empirical performance.

3. Benchmarking - our algorithm should be compared with a wider variety of
baseline techniques in order to fully understand its merits (and flaws).

4. Real-world experiments - we need to test our algorithm on real-world
datasets, moving beyond synthetic experiments.

σ2

We present results from a subset of the experiments run on synthetic functions commonly used for black-box optimization benchmarking [8]. The comparison is
between our algorithm above with Gaussian processes with the expected improvement criterion for optimizing the acquisition function (GP-EI) [9].

[1] Snoek, J., Larochelle, H., & Adams, R. P. (2012). Practical bayesian optimization of machine learning
algorithms. Advances in neural information processing systems, 25.
[2] Kandasamy, K., Neiswanger, W., Schneider, J., Poczos, B., & Xing, E. P. (2018). Neural architecture
search with bayesian optimisation and optimal transport. Advances in neural information processing
systems, 31.
[3] Bhagoji, A. N., He, W., Li, B., & Song, D. (2018). Practical black-box attacks on deep neural networks
using efficient query mechanisms. In Proceedings of the European Conference on Computer Vision (ECCV)
(pp. 154-169).
[4] Liu, S., Chen, P. Y., Kailkhura, B., Zhang, G., Hero III, A. O., & Varshney, P. K. (2020). A primer on
zeroth-order optimization in signal processing and machine learning: Principals, recent advances, and
applications. IEEE Signal Processing Magazine, 37(5), 43-54.
[5] Sobester, A., Forrester, A., & Keane, A. (2008). Engineering design via surrogate modelling: a practical
guide. John Wiley & Sons.
[6] Solnik, B., Golovin, D., Kochanski, G., Karro, J. E., Moitra, S., & Sculley, D. (2017). Bayesian
optimization for a better dessert.
[7] Verleysen, M. (2003). Learning high-dimensional data. Nato Science Series Sub Series III Computer And
Systems Sciences, 186, 141-162.
[8] Surjanovic, S. & Bingham, D. (2013). Virtual Library of Simulation Experiments: Test Functions and
Datasets. Retrieved April 28, 2022, from http://www.sfu.ca/~ssurjano.
[9] Bull, A. D. (2011). Convergence rates of efficient global optimization algorithms. Journal of Machine
Learning Research, 12(10).
[10] Lu, Z., Xia, W., Arora, S., & Hazan, E. (2022). Adaptive Gradient Methods with Local Guarantees.
arXiv preprint arXiv:2203.01400.
[11] Russo, D., & Van Roy, B. (2013). Eluder dimension and the sample complexity of optimistic
exploration. Advances in Neural Information Processing Systems, 26.

As the dimensionality and complexity of the synthetic function increases, we generally see that the greedy technique outperforms GP-EI in terms of simple regret.
There are instances where the greedy algorithm plateaus early - falling into a local minima and failing to exit it. A possible solution to this could be to add noise during
the neural network optimization so as to encourage exploration. In terms of cumulative regret, the experiments we conducted were unable to assign a clear winner.
GP-EI, unfortunately, does outperform our approach when it comes to wallclock time (running on a CPU). The bottleneck here is the fresh retraining of the neural
network in each step: an alternative to explore here could be to perform a warm-start and/or only train the neural network fully at regular intervals.

