Computational Biology partment

A Comparative Genomics Approach to Identifying Candidate **Enhancers Associated with Mammalian Phenotypes**

Background

commons.wikimedia.org/wiki/File:Mammal_Diversity_2011.png Figure 1. Assorted mammals.

- Mammals are very diverse (Fig. 1)
- Many differences are likely due to changes in gene regulation between species^{1,2}
- Enhancers are small DNA sequences that regulate gene activity in specific tissues³
 - Bound by transcription factors
- Goal: correlate their activity with phenotypes
 - Sequence similarity is insufficient
 - Instead, use models to predict activity Open chromatin regions (OCRs) are a proxy for enhancers in a species and tissue

References

- g, A. Wilson. *Science*. **188**, 107–16 (1975). al. Nature. 471, 216–19 (2011). ³D. Villar, P. Flicek, D. T. Odom. *Nat. Rev. Genet.* **15**,
- 221–33 (2014). ⁴I. M. Kaplow, D. E. Schäffer, M. E. Wirthlin, A. J.
- Lawler, et al. BMC Genom. 23, 291 (2022).
- et al. In preparation. ⁶C. Srinivasan, B. N. Phan, A. J. Lawler, E. Ramamurthy, ¹⁸M. Parrish, T. Ott, C. Lance-Jones, G. Schuetz, *et al.* et al. J. Neurosci. 41, 9008–30 (2021)
- ⁷M. Wirthlin, I. M. Kaplow, A. J. Lawler, J. He, *et al. bioRxiv*. 356733 (2020).
- ⁸M. E. Wirthlin, Z. Zhang, I. M. Kaplow, D. E. Schäffer, et al. In preparation.
- ⁹Z. Yao, H. Liu, F. Xie, S. Fischer, *et al. Nature*. **598**, 103–10 (2021).
- ¹⁰T. E. Bakken, N. L. Jorstad, Q. Hu, B. B. Lake, *et al.* Nature. 598, 111–19 (2021).
- ¹¹Zoonomia Consortium. *Nature*. **587**, 240–45 (2020). ¹²J. Armstrong, G. Hickey, M. Diekhans, I. T. Fiddes, *et* al. Nature. 587, 246–51 (2020).

- 1cLean, P. L. Reno, A. A. Pollen, A. I. Bassan, *et* ¹⁴E. Saputra, A. Kowalczyk, L. Cusick, N. Clark, M.
 - Chikina. Mol. Biol. Evol. 38, 3004–21 (2021). ¹⁵J. R. Burger, M. A. George, C. Leadbetter, F. Shaikh. J. Mammal. 100, 276-83 (2019).
 - ¹⁶S. Herculano-Houzel. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 10661–68 (2012).
- ⁵I. M. Kaplow, A. J. Lawler, D. E. Schäffer, C. Srinivasen, ¹⁷ C. Y. McLean, R. L. Reno, A. A. Pollen, A. I. Bassan, *et* al. Nature. 471, 216–19 (2011).
 - Mol. Cell. Biol. 24, 7102–12 (2004). ¹⁹P. Giusti-Rodríguez, L. Lu, Y. Yang, C. A. Crowley, *et al*.
 - bioRxiv. 406330 (2019). ²⁰D. Jeong, D. Lozano Casasbuenas, A. Gengatharan, K. Edwards, et al. Cell. Rep. 33, 108257 (2021)
 - ²¹L. Tan, W. Ma, H. Wu, Y. Zheng, et al. Cell. **184**, 741– 58 (2021). ²²J. den Hoed, E. de Boer, N. Voisin, A. J. M.
 - Dingemans, et al. Am. J. Hum. Genet. 108, 346–56 (2021).
 - ²³ E. Bayram, Y. Topcu, P. Karakaya, U. Yis, *et al. Eur. J. Paediatr. Neurol.*. **17**, 1–6 (2013).

- Train machine learning models to predict enhancer activity in specific tissues

- Find correlations between predicted OCR activity and phenotype annotations (Fig. 3)
- Fit line (or logistic curve) accounting for phylogenetic relationships¹³
- Compute p-values by comparison with fit to null phenotype distribution Phylogenetic permulations¹⁴ preserve the tree topology of the phenotypes
- Study associated enhancers to provide insight into regulatory mechanisms governing phenotypes

- Using brain size w/ body mass regressed out¹⁵ • Large variation across mammals¹⁶ (**Fig. 4**) Known to have evolved through regulatory sequence deletion in humans¹⁷
- 34 motor cortex and 13 parvalbumin-neuron OCRs with significant associations ($p_{FDR} < 0.05$)
- 41 of 47 near known neurodevelopmental genes
- Positively-associated motor cortex OCR near SALL3 (Fig. 5A) SALL3 regulates neuron maturation¹⁸
- Negatively-associated motor cortex OCR near *LRIG1* (Fig. 5B)
 - *LRIG1* regulates neural precursor development²⁰
 - OCR is physically close to *LRIG1* in both human and mouse cortices^{19,21}
- Two negatively-associated motor cortex OCRs near the gene SATB1 (Fig. 5C-D)
 - Mutations in SATB1 cause abnormal brain size²²
 - One physically close to SATB1 in mouse cortex²¹
- Two negatively-associated parvalbumin-neuron OCRs near the gene *Mocs2*
 - Mutations in *Mocs2* also result in abnormally small brains²³

Daniel E. Schaffer

Advisors: Dr. Irene Kaplow & Prof. Andreas Pfenning

The Tissue-Aware Conservation Inference Toolkit (TACIT)

- In this project: CNNs^{4,5} on OCRs identified in brain regions^{6,7,8} & cell types^{9,10} of 2-5 species
- Predict enhancer activity across many species with aligned genomes (Fig. 2-3)
 - In this project: >200 mammals¹¹ in a Cactus alignment¹²

Brain Size Results⁵

Brain Size Highlights

	Euarchontoglires			
	Xenarthra	eater (Scill		
Afrotheria		The second	The second se	
ALL NOTES	sloth	rabbit tree shrew	2	
	armadillo	rat all galago	9	
	golden mole	human shrow	Eulipotyphla	
elephar	it shrew		iole	
manatee hyrax elepha	// 2		horseshoe bat	
			flying fox	
Justin			cat	Carnivora
Marsupialia		Y III		don
bandicoot		100 95 88		log
grey kangaroo	105	85	1//	
	1	t is	Zebra	13.
opossum			, thin	0 1
	/ / N	180 Mya	lla lla	ma
Monotremata				pig 🌾
			· · ·	www.
platypus		230 Mya		(D)LA
echidna			\sim	- All
0 50 Mya 100 M	ya 150 Mya 200 Mya 2	/ 250 Mya		AN PRA
			1	RE
			1	the p
				A BOOM

Source: Herculano-Houzel, PNAS, 2012¹⁰ Figure 3. Mammalian brain size.

In human cortex, OCR is physically close to SALL3 and not other genes¹⁹

Carnegie Mellon University School of Computer Science

Figure 5. Selected motor cortex OCRs associated with brain size.

Each point represents one ortholog, grouped along the x-axis by clade as shown by the tree below. Associations in the Hominoid and Cetacean clades are shown in blue and green insets. Points are colored by brain size residual following the scale below.

Other Results

- Two OCRs in a key locus associated with social behavior in humans and mice⁵
- 53 OCRs associated with vocal learning⁸
- Extension: Train a CNN to predict whether OCRs are involved in response to neuron activation
 - Insufficient accuracy to use in associations

Acknowledgements

I would like to thank Irene Kaplow for her continued mentorship and several contributions, including training motor cortex models, Andreas Pfenning for his mentorship, Alyssa Lawler for her work on parvalbumin neurons, Morgan Wirthlin for her work on vocal learning, as well as the many other members of the Neurogenomics Lab and collaborators who worked on this project. I would also like to thank Elinor Karlsson, Kerstin Lindblad-Toh, and the other members of the Zoonomia Consortium. This work used the Extreme Science and Engineering Discovery Environment, through the Pittsburgh Supercomputing Center Bridges and Bridges-2 systems.