Analysis for Graph-Based SLAM Algorithms
under g?o Framework

Tianxiang Lin, Jiayin Xia, Qishun Yu, Kerou Zhang and Ben Zhou

Carnegie Mellon University

May 2021

Contents
1 Introduction

2 Graph Optimization
2.1 Graph Optimization Frameworks
2.2 Graph Optimization Algorithms
2.3 Robust Kernels o

3 Project Settings
3.1 Datasets
3.2 Noise on Initial Estimates
3.3 Loop Closure Constraint Outliers

4 Experiments and Discussion
4.1 Optimization Algorithm Performance to Poor Initial Estimates .
4.2 Kernel Performance to Poor Initial Estimates
4.3 Kernel Performance to Outliers

5 Conclusion and Future Work

Tk W W

0~~~

1 Introduction

Simultaneous Localization and Mapping (SLAM) is the computational problem
of constructing or updating a map of an unknown environment while simulta-
neously keeping track of an agent’s location within it. The back-end of SLAM
can be classified into two processing methods: filter methods (e.x. Kalman
Filter), and nonlinear optimization (e.x. graph-based optimization). Although
filter methods used to be popular among researchers in SLAM, state-of-the-art
research topics in the SLAM field are mostly in graph-based optimization re-
cently. This is because filter methods, such as Kalman Filter, are not suitable
for large environments with a huge amount of data in visual SLAM. In visual
SLAM, the number of camera poses and image feature points is huge, but the
Jacobian in graph-based method is sparse, which means it can speed up. Com-
pared to filter methods, the efficiency of nonlinear optimization is significantly
higher in visual SLAM. That’s why our project focus will be on graph-based
optimization.

2 Graph Optimization

Graph-based optimization is a SLAM optimization problem represented by a
graph that is composed of vertexes and edges. In the graph, the poses are
represented by vertices and the observation equations are represented by edges.
Therefore, the objective function can be written as

x2* = min F(z)
T

n
F(z) = Zek(xkv z) " Qen(k, 21)
k=1
where (2 is the inverse of the covariance matrix of poses, e is the error function
representing difference between real and estimated measurement. By minimiz-
ing F(x), we can find a set of poses = that best desribes measurements z.

2.1 Graph Optimization Frameworks

General Graph Optimization (g20) is a framework used for optimizing nonlinear
least-squares problems that can be represented as a graph. It has performance
that is comparable to specialized algorithms while being able to accept general
forms of nonlinear measurements[3]. Looking at the structure of g2o shown
in Figure 1, it can be seen that the core of the framework is the SparseOpti-
mizer, which is a HyperGraph. The SparseOptimizer has an OptimizationAlgo-
rithm that uses either Gauss-Newton, Levenberg-Marquardt, or Powell’s dogleg.
The OptimizationAlgorithm includes a Solver, which calculates the Jacobian of
sparse matrices and Hessian matrix, and a linear solver which solves HAx = —b
using PCG, CSparse, or Choldmod [2]. g20 however is a non-robust optimizer.
In the presence of outliers, the performance of g2o drastically decreases[5].

HyperGraph] | HyperGraph::Edge I

.._._._.._.,.l HyperGraph:: Vertex

has-many

OptimizableGraph | OptimizableGraph::Edge

| OptimizableGraph:: Vertex |

| BaseUnaryEdge=D E, VertexXi> |

BaseVenex<D, T> | BaseBinaryEdge<D.E Vertex X1, Vertex Xj> |

| BaseMultiEdge<D E>]

SparseOptimizer

¥
|Optimi'.'.urinn.~\lgnrimm |(—|Dplimi'.’;ztinnWlthc:.':;ian }--°‘| Solver

| Gauss-Newion | BI::L'I\'S:\I\CM; I ------- !n-l LinearSolver |
1

|Lr:mnbclg-M-.|.rquuldt

cell’s Il T
Powell's dogleg | | I | LincarSolverPCG<>

| SparseBlockMatrix<T>

| LinearSolverCSparse<>

| LincarSolveriCholmod=> I

Figure 1: The Structure of g2o

2.2 Graph Optimization Algorithms

The G20 framework is formulated as a nonlinear least-squares optimization.
Given the robot measurements, the optimizer is able to formulate the solution
with the least total of the square of the residual error between the expected and
actual states. In the project, we uses Gauss-Newton, Levenberg-Marquardt, and
Powell’s dogleg methods as our traditional optimizer. The naive implementation
of standard algorithm are introduced below.

Gauss-Newton Given residual function of the states, Gauss-Newton method
iteratively solve the optimization by minimizing the sum of squares. Starting
with an initial estimate 2°, Gauss-Newton first linearize the nonlinear system
with h;(z" + A) = h;(z') + H;Ay, and assemble into || AA,, —b||%. The A,
can be further solved by the normal equations:

ATAA,, = ATb
and the resulting A, is used to update z'*!. This process is repeated until

convergence.

Levenberg-Marquardt Levenberg-Marquardt method associates Gauss-Newton
method with gradient-descent method by introducing an additional parameter
A into the normal equation resulting in the equation below:

(ATA+ XA, = ATh

The damping factor A is used to adjust the reduction of the sum of residual
error. When the damping factor A is small, the equation behaves closer to
the Gauss-Newton method, while high value A makes the equation behaves like
gradient-descent with small steps. The resulting Ay, is used to update z‘*?.
This process is repeated until convergence.

Powell’s dogleg Similar to the Levenberg-Marquardt method, Powell’s dog-
leg method associates Gauss-Newton method with gradient-descent method. At
each iteration, the method explicitly maintains a trust region T and calculate
the Gauss-Newton update Ag, and steepest descent update Agq. Then, the
update of Ay is selected based on these three parameters, as shown in the al-
gorithm.

Algorithm 1: Powell’s dogleg method

Result: Return Dogleg update Ay
for each, i € I do
if Ay, <T then
‘ Acll = Agn
else
if Agq > T then
| Ag = Asq (at the boundary T)
else
Ag = Ay (intersection between Agq and Ay, at the
boundary T)
end

end
end

2.3 Robust Kernels

For the optimization problem of SLAM, as soon as the real world is involved,
outliers and ambiguities may occur. Optimization is sensitive to outliers, if
the data point is very far away from our model, the error gets squared and
amplified quite substantially. In order to be more outlier robust, g2o framework
is able to replace the error function by a more robust cost function like huber
for example. In this section, three robust kernel functions are introduced and
tested for robustness.

Huber In g2o0, Huber cost function is implemented to deal with data outliers.
The conditional expression is shown below, where e is the residual error. The
cost function is quadratic when e is small but linear for large e. Compared to
other, even more robust cost functions, the Huber kernel has advantage that
it is still convex and thus does not introduce new local minima in the error

function [3].

e? if |e|<b
L e —) —
s(©) {Qb | e | —b% otherwise

Geman-McClure Originally introduced as a nonlinear filter for film restora-
tion in image processing [1], the Geman-McClure cost function also penalize
more when the error term e is small, as shown in Figure 2 and equation:

2

Ls(e) = T

k=1
k=2
k=3
k=4 |

Figure 2: Geman McClure cost function

DCS The key idea of Dynamic Covariance Scaling (DCS) is the introduction
of additional weights to constraint outliers. The method adds additional scaling
factor s7; to the information matrix.

17

For every constraints, an individual scaling factor is added to the standard least
squares equation to down rate the error if the current state is considered to be
an outlier. The scaling factor is defined as:

. 1 2P
si; =min | 1, ———
! ‘I)+Xz‘2j

Where & is the parameter that we can define to influence the effect of the
down rate. Scaling factor is set to be 1 if the constraints is close to the mean
estimate but it will weight down the constraints that are far away from the
mean estimate.

3 Project Settings

3.1 Datasets

Manhattan 3500 Dataset Manhattan 3500 is a synthetic dataset by Olson
et al.[4], which consists of 3500 poses and 5600 constraints. For initialization
procedure, we use the dataset provided by Olsen[4] and g20[3]. Meanwhile, we
propose a method to add noise on ground truth to test optimization algorithms
and robust kernels, which will be fully discussed in the section 3.2 and 3.2.

aunswals rj
Innunnsuves:
NESADEBNADSR!
Ny psuenu
(a) Mahattan 3500 gt (b) Mahattan 3500 g2o (c) Mahattan 3500 Olson

Figure 3: Manhattan 3500 Dataset

Intel Dataset Intel Dataset, acquired at the Intel Research Lab in Seattle, is
the dataset whose pose graph was obtained by processing the raw measurements
from wheel odometry and laser range finder. For initialization procedure, we
use the dataset provided by g2o[3]. We also add loop closure and Gaussian
noises on initial poses on the ground truth to test the efficiency and accuracy
of selected algorithms and robust kernels.

(a) Intel gt (b) Intel dataset with Noise

Figure 4: Intel Dataset

3.2 Noise on Initial Estimates

Two types of different errors are added to the datasets mentioned above. First
method is adding noise on initial estimates, which means errors on the vertices
in the g2o files. A Python script is written to process the datasets. We added
three Gaussian Distribution noises to the x, y, and theta values correspondingly.
The Gaussian Distributions are all with zero means, and the values of standard

deviation of x, y are two times larger than the standard deviation of theta.
Multiple trials are implemented for standard deviation of x and y ranging from
0.5 to 2.5 on Intel Dataset. Further experiments are conducted on the Intel
Dataset with poor initial estimates to evaluate the optimization performance
with and without robust kernels.

3.3 Loop Closure Constraint Outliers

Another type of error added on datasets is adding outliers to loop closure con-
straints. A dataset generation Python script from Vertigo, an extension library
of g20[3] is used for this type of error data generation. Loop Closure Con-
straint Outliers are added additionally to the original edges of the g2o dataset
files. Specifically for this project, we added local loop closure outliers. This
is assumed to be more challenging than other types of outliers since the opti-
mization algorithm need to distinguish the edge outliers which are not far off
from the original edges. We used Manhattan 3500 ground truth dataset as the
input file of the Python script and added different numbers of local loop closure
outliers ranging from 1 to 10. Further experiments are conducted with different
robust kernels to evaluate the optimization performance.

4 Experiments and Discussion

4.1 Optimization Algorithm Performance to Poor Initial
Estimates

To test how different optimization algorithms perform when given a poor initial
estimate, we used the Manhattan 3500 dataset with varying amounts of noise
added to the ground truth values and optimized with the GN, LM, and dogleg
methods. We then plotted the chi-squared value verses the number of iterations
for each of these methods. The results can be seen in Figure 5. The first four
graphs are when we added an increasing amount of noise to the ground true
dataset to simulate poor initial estimates. The fifth graph is the g2o dataset,
and the last graph is the Olsen dataset.

covariance=0.5 covariance=1.0 covariance=1.5

— levenberg mamuard A — levenberg-marquardt
— dogleg
— Gauss Newton

— dogleg
— Gauss Newtan

3]
Rerations

covariance=2.0

— — ievenberg-marquardt 000
. [— agleg
/ Gauss Wewton 0900

— kevenbergmarguandt
— doleg

Gauss Newton

3 H H © H
Kerations terations Rerations

Figure 5: The Structure of g2o

From these graph, we can see that the GN method is not a stable method,
as the chi-squared value can fluctuate a bit. However, similarly between all
three methods, as the amound of noise added increases, it becomes impossible
for these optimization algorithms to reduce the chi-squared value to a relatively
small value.

4.2 Kernel Performance to Poor Initial Estimates

We then tested the affects of applying a robust kernel when doing optimization
on poor initial estimates. Using the g2o intel dataset as the ground truth, we
added an increasing amount of Gaussian noise to the grout truth to simulate bad
initial estimates. We then optimized each dataset with the dogleg method both
using and without using the Huber kernel. The results of these optimizations
can be seen in Figure 6.

[]

No Kernel

Huber Kernel

Variance = 0.5 Variance = 1 Variance = 1.5 Variance = 2 Variance = 2.5

Figure 6: Optimization output with and without Huber kernel

The images from left to right show the output of the optimization when
Gaussian noise with an increasing variance is added to the initial guess. The
top row shows the output when no kernel is used, and the bottom row shows
the output when the robust Huber kernel is used. Just from a visual compari-
son, it can be seen that the Huber kernel greatly increases the accuracy of the
optimization, especially as the initial estimates get worse. This is also reflected
in the chi-squared values of these outputs.

4500000

4000000
3500000 | —®—None

—&—Huber

3000000
2500000

Q 2000000
1500000
1000000
500000

0 @ & & & ®
0 0.5 1 1.5 2 2.5

Variance

"2

Figure 7: Chi-squared of optimization with and without Huber kernel

As can be seen from Figure 7, the chi-squared value of the optimization
when not using any robust kernel increases drastically as the amount of noise
increases. However, when applying the Huber kernel, the chi-squared values are
barely increasing.

4.3 Kernel Performance to Outliers

al
D]

4
|

Wam|

-
2]

(a) Ground Truth (b) Optimized with 10 Incor-
rect Loops

Figure 8: Robust Kernel’s Reaction on close loop constraint outliers

10

Finally, we tested the affects of applying a robust kernel when doing optimization
on false positive loop closure constraints. We used Manhattan 3500 as our
testing dataset for this experiment, added up to 10 incorrect loop closure, and
optimized with Powell’s dogleg algorithm.

According to our experiments, shown in Figure 8, the optimized results
deteriorated with the increase of false positive loop constraints. Adding 10
incorrect loop constraints to the ground truth, the optimized result became
unrecognizable compared to the ground truth, even though chi-square value
converged.

5 Conclusion and Future Work

From the experiments we make in the previous sections, Gauss-Newton Law
might converge fastest, but its convergence will show sawtooth-like behaviors.
And Levenberg-Marquardt and Powell’s dogleg Algorithm are more robust to
outliers. Furthermore, robust kernels like Huber, Cauchy, Geman-McClure,
and DCS are helpful against poor initialization. However, they are not efficient
enough to loop closure outliers according to our experiments.

There are two interesting directions where our experiments and implementa-
tions can be extended. First of all, two datasets are not enough to make general
conclusions, so we want to perform more experiments on different datasets. And
we want to implement kernel robust against false positive loop closures.

References

[1] Stuart Geman, Donald E. McClure, and Donald Geman. A nonlinear fil-
ter for film restoration and other problems in image processing. CVGIP:
Graphical Models and Image Processing, 54(4):281-289, 1992.

[2] Giorgio Grisetti, Rainer Kummerle, Hauke Strasdat, and Kurt Kono-
lige grisetti. g20: A general framework for (hyper) graph optimization.
https://vincentqin.gitee.io/blogresource-4/slam/g2o-details.pdf. Accessed:
2021-3-15.

[3] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o:
A general framework for graph optimization. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), pages 3607—
3613, Shanghai, China, May 2011.

[4] Edwin Olson, John Leonard, and Seth Teller. Fast iterative alignment of
pose graphs with poor initial estimates. pages 2262 — 2269, 06 2006.

[5] Heng Yang, Pasquale Antonante, Vasileios Tzoumas, and Luca Carlone.
Graduated non-convexity for robust spatial perception: From non-minimal
solvers to global outlier rejection. IEEE Robotics and Automation Letters,
5(2):1127-1134, 2020.

11

