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Abstract

Recently, adapting or transferring knowledge across different datasets or domains
has gained increasing interests. Different learning methods include domain adap-
tation, transfer learning, meta learning and few/zero-show learning. Among the
many strategies proposed to adapt a domain to another, finding a common rep-
resentation has shown excellent properties: by finding a common representation
for both domains, a single classifier can be effective in both and use labelled
samples from the source domain to predict the unlabelled samples of the target
domain. In this project, we focus on a large-scale optimal transportation model
to perform the alignment of the representations in the source and target domains.
First, we learn an optimal transport (OT) plan. To that end, we use a stochastic
dual approach of regularized OT, which enables OT scale to large datasets. Second,
we estimate a Monge map as a deep neural network learned by approximating
the barycentric projection of the previously-obtained OT plan. This parameter-
ization allows generalization of the mapping outside the support of the input
measure. The source code for this project can be obtained by this github repo:
https://github.com/yihhhh/OT-for-Domain-Adaptation.

1 Introduction

In modern data analytics, data used for learning a decision function and those used for inference do
not necessarily follow the same distribution based on various applications. For example, in robotic
and autonomous driving applications, domain drifts may occur during the navigation data collection
because of lighting conditions, dynamic obstacle changes, and device changes. Domain adaptation
problems are developed to learn the discrepancy context from a source domain to a target domain
which has different data PDFs [7].

∗Mentor of the project
†Mentor of the project

https://github.com/yihhhh/OT-for-Domain-Adaptation


This project works on unsupervised domain adaptation[1] that data lables are only available in the
source domain. It is performed under the assumption that the domain drifts can be reduced if data
undergo a phase of non-linear mapping where both domains are more similar. The project focuses on
the approach that has minimal transformation cost or metric. It aims at computing a transformation of
input data which matches the distributions of source and target while learning a new classifier from
the transformed source. The algorithms we use is mainly proposed by this paper[9].

2 Literature Review

2.1 Background on Optimal Transport

Monge problem Let X ⊆ Rds and Y ⊆ Rdt be two complete and separable metric spaces and
M(Z) denote the space of probability measures over spaces Z . Given two probability measures
µ ∈ M(X ), ν ∈ M(Y) and a cost function c : X × Y 7→ R+, the Monge problem consists in
finding a Borel map, T : X 7→ Y between µ and ν that realizes the infimum

inf
T

∫
Ω

c(x, T (x))dµ(x) subject to T#µ = ν, (1)

where T#µ denotes the push forward operator of µ by T . The existence of the optimal transport map
T is not always guaranteed: the Monge problem is non-convex and often unfeasible, for example,
when the support µ and ν are different number of Diracs. Monge’s formulation can be improved by
the following relaxation problem by Kantorovich [6].

Kantorovich relaxation Given µ ∈ M(X ), ν ∈ M(Y) and a cost function c : X × Y 7→ R+,
Kantorovich OT seeks a joint measure π ∈ Π minimizing

W (µ, ν) := inf
π∈Π

∫
X×Y

c(x, y)dπ(x, y). (2)

Here, Π is the set of couplings of µ and ν denoted by :

Π = {π : γX
#π = µ, γY

#π = ν}, (3)

where γX , γY are functions that project onto X and Y respectively. Note that the optimal coupling
always exists, and the conditional probability distributions πy|x gives stochastic maps from X to Y
and is considered as ”one-to-many" version of the deterministic map of the Monge map.

The computation in high dimensions of the optimal transport is typically computationally intensive.
A faster approximate solution was proposed by [4] as follows:

inf
π∈Π

∫
X×Y

c(x, y)dπ(x, y) + λH(π). (4)

Here, H(π) =
∫
π(x, y) log(π(x, y))dxdy is the negative entropy function of π.

Regularized OT To improve the computational efficiency, regularization is included in the calculation
of OT. It is achieved by adding a negative-entropy penalty to the Kantorovich Relaxation problem.

inf
π

E(X,Y )∼π[c(X,Y )] + εR(π) subject to X ∼ µ, Y ∼ ν. (5)

2.2 Domain adaptation as a transportation problem

Let Ω ∈ Rd be an input measurable space of dimension d and C the set of possible labels. P(Ω)
denotes the set of all probability measures over Ω.
In a standard learning paradigm, one assumes a set of training data Xs = {xs

i}Ni=1s is associated with
a set of class labels Ys = {ysi }Ni=1s, with ysi ∈ C, and a testing set Xt = {xt

i}Ni=1t with unknown
labels. In order to infer the set of labels Yt associated with Xt, one usually relies on an empirical
estimate of the joint probability distribution P (x, y) ∈ P(Ω× C) from (Xs, Ys) and assumes that
Xs and Xt are drawn from the same distribution P (x) ∈ P(Ω). However, domain drifts between Xs

and Xt exists for multiple reasons in the real world applications.
In domain adaptation problems, we denote a source domain and a target domain as Ωs and Ωt. In some
studies, domain drift is considered to be caused by an unknown, possibly nonlinear transformation of
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the input space T : Ωs → Ωt. This transformation may have a physical interpretation (e.g. sensor
drifts, thermal noise. etc). Additionally, an assumption are made that the transformation preserves
the conditional distribution, i.e.

Ps(y|xs) = Pt(y|T (xs))

This means that the label information is preserved by the transformation. Assume the existence of
two distinct joint probability distributions Ps(x

s, y) and Pt(x
t, y) that are related to the source and

target domains and represent their corresponding marginal distributions over X are µs and µt, a
principled way to solve the adaptation problem can be formulated as follows:
1) Estimate µs and µt from Xs and Xt;
2) Find a transport map T from µs to µt;
3) Use T to transport labeled samples Xs and train a classifier from them.
Searching for T in the space of all possible transformations is intractable, and some restrictions need
to be imposed. Here, we propose that T should be chosen so as to minimize a transportation cost
C(T) expressed as:

C(T) =

∫
Ωs

c(x,T(x))dµ(x),

where the cost function c : Ωs × Ωt → R+ is a distance function over the metric space Ω. C(T) can
be interpreted as the energy required to move a probability mass µ(x) from x to T(x).
The problem of finding such a transportation of minimal cost has already been investigated in the
literature, for example, Sinkhorn’s algorithm.

2.3 Large-Scale Optimal Transport

Regularized OT dual To apply OT to large-scale data, a dual stochastic approach is used on the
regularized Kantorovich problem by letting X ∼ µ and Y ∼ ν. The dual of regularized OT problems
is computed through the Fenchel-Rockafellar’s duality theorm, and both entropy regularization and
L2 regularization are considered.

sup
u,v

E(X,Y )∼µ×ν [u(X) + v(Y ) + Fε(u(X), v(Y ))] (6)

where

Fε(u(x), v(y)) =

{
−εe

1
ε (u(x)+v(y)−c(x,y)) (entropy reg.)

− 1
4ε (u(x) + v(y)− c(x, y))2 +

(
L2 reg.

) . (7)

The regularization relaxes the hard constraint with a strictly convex regularizer R since it is hard to
satisfy the hard constraint on u and v along gradient iterations. It is enforced smoothly through a
penalty term which is concave with respect to (u, v).

Primal-Dual Relationship To recover the solution of the regularized primal problem (5), first-order
optimality conditions of the Fenchel-Rockafellar’s duality theorem can be used.

dπε(x, y) = Hε(x, y)dµ(x)dν(y) where Hε(x, y) =

{
e

u(x)
ε e−

c(x,y)
ε e

v(y)
ε ( entropy reg. )

1
2ε (u(x) + v(y)− c(x, y))+

(
L2 reg.

) (8)

Algorithm The Stochastic OT computation algorithm sums up large-scale OT. By stochastic gradient
methods sampling from µ× ν, the relaxed dual problem can be maximized. The dual variable is a
n-dimensional vector under the discrete case so that optimization can be computed. When µ has a
density, u is a function that must be parametrized for optimization. Hence, deep neural networks are
used since they are universal function approximators.

2.4 Optimal Mapping Estimations

Barycentric Projection Barycentric projection π̄, in which π is a solution of the regularized OT
problem, with respect to a convex cost d : Y × Y → R+ is defined as

π̄(x) = argmin
z

EY∼π(·|x)[d(z, Y )] (9)
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With respect to the squared Euclidean cost, the Barycentric Projection is usually served to recover
optimal maps from optimal transport plans [8] (9) calculates a pointwise value. It indicates that a
finite number of points is needed for mapping estimations if µ is discrete. The Barycentric Projection
is defined as a deep neural network since we’d like the map to be defined everywhere.

Optimal Map Learning The objective function below with respect to the parameter θ can be
minimized by training a deep neural network. An estimation of the Barycentric Projection of a
regularized plan that generalizes outside the support of µ can also be obtained.

EX∼µ

[
EY∼πε(·|X) [d (Y, fθ(X))]

]
= E(X,Y )∼πε [d (Y, fθ(X))]

= E(X,Y )∼µ×ν [d (Y, fθ(X))Hε(X,Y )]
(10)

This objective function is minimized by stochastic gradient descent in Algorithm 2. The oppo-
site Barycentric Projection can also be computed with respect to a convex cost by minimizing
E(X,Y )∼µ×ν [d(g(Y ), X)Hε(X,Y )] since the OT map is symmetric.

3 Methodology

The computational framework is illustrated in 1 and follows two basic step: 1) learn an optimal map
between the source and target distribution with Alg. 1 and Alg. 2; 2) map the source samples and
train a classifier on them in the target domain. Specifically, in the first step, an optimal transport plan
is parameterized as neural networks and learned from seen data (Alg. 1). Then, the obtained solution
are used for learning an estimate of the barycentric projection from source domain to target domain
that generalizes to unseen data using a neural network (Alg. 2).

4 Numerical Examples

To illustrate the behavior of the above optimal transport base method applied to DA problem,
we use two toy examples, double moons and double circles. In the double moons case, the
simulated datasets consists of two domains: the standard two entangled moons data, where
each moon is associated to a special class. In the two circles case, the simulated datasets
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Figure 1: Pipeline of Optimal Transport based Domain Adaptation. [3]

consists of two domains: the circles data, where the two circles share the same center while have
different radius. This two toy examples are notably interesting because the input dimensional-
ity is small, 2, which leads to poor performance when applying methods based on subspace alignment.

(a) The standard two entangled moons data (b) The circles data

Figure 2: Visualization of two Numerical Examples

For both examples, source domain and target domain are consist of 500 samples each. Besides,
Gaussian noises with the standard deviation of 0.1 are added to data to simulate real world data.
Results are shown in Fig. 2. We can observe that the mapped source data well preserves the shape of
the target domain, which proves that the aforementioned method have the basic ability for domain
adaptation task. In the following section, we use large datasets to evaluate its scalibility.

5 Experimental Setups

We apply the above method on an unsupervised domain adaptation (UDA) task. Our goal here is
not to compete with the state-of-the-art methods in domain adaptation but to assess that this kind
of computation framework allows to scale to optimal transport based domain adaptation (OTDA) to
large datasets.

5.1 Datasets

We used two cross-domain digit image datasets MNIST and USPS. Both datasets have 10 classes of
digits from 0 tos 9. 60000 samples in the MNIST domain and 7291 samples in the USPS domain
are used for the adaptation. To keep consistency with USPS images, digit images from MNIST are
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resized from the size of 28× 28 to 16× 16 by simple interpolation and downsampling. We consider
MNIST dataset as the source domain and USPS as the target domain.

5.2 Baseline

Adaptation performance is evaluated using a 1-nearest neighbor (1-NN) classifier because it has
the advantage of being parameter free and allows better assessment of the quality of the adapted
representation (Courty et al., 2017b). In our experiments, we consider the 1-NN classification as a
baseline, which is trained with the adapted source data and evaluated over the target data to provide a
classification accuracy score. Here, 60000 samples from MNIST training set are used for training
and xxx samples from USPS are used for testing.

5.3 Hyper-parameters

There are several sets of important hyper-parameters in the experiments. To narrow down our
search space, we simply use multi-layer perceptron for both dual variable estimation and barycentric
projection estimation networks so that the only parameter we need to tune is the number of hidden
layers. Note that the size of the hidden layer are set to be symmetrical that first expand the dimension
of the feature space and then gradually scale it down, both with a factor of 2. For instance, the hidden
sizes of a 4-hidden-layer network are (d → 2d → 2d → d), the hidden sizes of a 5-hidden-layer
network are (d → 2d → 4d → 2d → d), where d is the input dimension. ReLU are used as the
activation function here. The value for the number of hidden layers of dual variable estimation is
set in {3, 4, 5, 6, 7, 8, 9}, and that of barycentric projection estimation is set in {4, 5, 6, 7, 8}. Adam
optimizer with batch size 1024 is used to optimize the network. The initial learning rate for Alg. 1 is
varied in

{
2e−6, 1e−5, 2e−5, 1e−4, 2e−4, 3e−4

}
, while that for Alg. 2 is set to be 2e−4. Learning

rate will be reduced by factor of 10 for every 100 epochs.
The regularization type and its corresponding scalar are also crucial hyper-parameters. For entropy-
regularization, the scalar is chosen from {0.01, 0.1, 1, 10, 100}. For L2-regularization, the scalar is
chosen from

{
10, 5, 1, 5e−1, 1e−1, 5e−2, 1e−2, 5e−3, 1e−3, 5e−4, 1e−4, 5e−5, 1e−5

}
. While we are

tuning one hyper-parameter, other hyper-parameters keep fixed.

6 Results

Results on domain adaptation varied with number of hidden layers are provided in Table 1 and 2. We
choose the network and learning rate with the best performance to carry on experiments with different
regularization settings. Table 3 shows the experiment results with different regularization settings.
From the above results, we can see that the test accuracy raise from 61.23% without adaptation to
70.45% by using the large-scale OTDA method.

We calculate the mean of digit images in each category from source data, mapped source data
and target data. By visualize the mean images as presented in Fig. 3, we observe that for
L2-regularization, with smaller scalar thus larger regularization value, the patterns of mapped source
data become more distinct. Table 4 shows the sparsity of optimal transport plan, indicate that the
regularization actually adds the sparsity of the optimal transport plan π. Note that the OT plan itself
does not necessarily need to be sparse. However, when we apply it to applications like domain
adaptation, we desire it to be sparse (or at least group-sparse) to enhance the interpretability, for that
intuitively, samples in the source domain should be transferred towards samples in the target domain
with the same labels.[2]

Moreover, the sparsity of the plan π is positively correlated with the clarity of the mapped data pattern.
However, a more distinct pattern in mapped source data does not lead to a better performance in
adaption. In our case, the digit 4 and 7 are mapped in a way that is increasingly like 9 as regularization
value grows. That may impede classifier from correctly learn the feature of 9, since inputs with
features that supposed to be 9 are labeled with 4 or 7. A more detailed look into accuracy for each
category provided in Figure 4 further confirm the above points. The accuracy 9 are much lower
than that of other digits. One of the reason why 4 and 7 cannot be well adapted may be the inherent
similarity among 4, 7 and 9 in the source domain. Digit 5 also shows bad performance in Figure
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Figure 3: Visualization of mean images of each category in source data (the left column), mapped
source data (the middle column) and target data (the right column) with two different L2 regularization
setting

Figure 4: Test Accuracy for each digit category under different L2-regularization settings

Figure 4, this may also due to its inherent unclear feature pattern. Figure 5 is a visualization of the
two dimensional features of different digits in MNIST extracted by PCA, which shows the little
divergence among 4, 7 and 9, as well as the unclear feature pattern of digit 5. In this project, we did
not do many feature processing, we believe extra feature extraction, i.e. using an autoencoder, would
help address this issue.

7



Figure 5: The two dimensional codes for 500 digits of each class produced by taking the first two
principal components of all 60,000 training images. [5]

Table 1: Results (accuracy in %) on domain adaptation from MNIST to USPS dataset with different
number of hidden layers for dual variable estimation(Alg. 1). In the corresponding experiments,
5-hidden-layer MLP and a learning rate 2e-4 are used for barycentric projection estimation (Alg. 2).
Learning rate for Alg. 1 is set to be 2e-4 here.

Experiment Test Accuracy (%)
w/o DA 61.24

# layers = 3 59.59
# layers = 4 62.03
# layers = 5 61.78
# layers = 6 63.13
# layers = 7 66.02
# layers = 8 65.07
# layers = 9 63.83

Table 2: Results (accuracy in %) on domain adaptation from MNIST to USPS dataset with different
number of hidden layers for barycentric projection estimation (Alg. 2). In the corresponding
experiments, 7-hidden-layer MLP and a learning rate 2e-5 are used for dual variable estimation (Alg.
1). Learning rate for Alg. 2 is set to be 2e-4 here.

Experiment Test Accuracy (%)
w/o DA 61.24

# layers = 4 69.06
# layers = 5 68.96
# layers = 6 63.02
# layers = 7 55.3
# layers = 8 68.46
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Table 3: Results on domain adaptation from MNIST to USPS with entropy and L2 regularizations. In
the corresponding experiments, 7-hidden-layer MLPs and a learning rate 2e-5 are used for Alg. 1,
4-hidden-layer MLPs and a learning rate 2e-4 are used for Alg. 2.

Experiment Test Accuracy(%)
w/o DA 61.24

L2-Regularization

ε = 10 29.40
ε = 5 33.08
ε = 1 48.33
ε = 0.5 58.30
ε = 0.1 63.08
ε = 0.05 65.62
ε = 0.01 67.56
ε = 0.005 69.61
ε = 0.001 69.06
ε = 0.0005 70.45
ε = 0.0001 63.98
ε = 0.00005 64.28
ε = 0.00001 56.70

Entropy-regularization

ε = 0.1 32.74
ε = 1 67.91
ε = 10 41.31
ε = 100 16.89

Table 4: The sparsity of the optimal transport plan varied with different L2 regularizations. Here, the
sparsity of a matrix is defined as the percetange of zero elements in a matrix.

ε Sparsity
10 0.0000
5 0.0000
1 0.1554

0.5 0.4020
0.1 0.8121

0.05 0.8958
0.01 0.9721
0.005 0.9847
0.001 0.9961

0.0005 0.9978
0.0001 0.9995

0.00005 0.9997
0.00001 1.0000

7 Conclusion

We implement two algorithms that allow for large-scale computation of regularized optimal transport
and learning an optimal map that moves one probability distribution onto another. Experiments
to investigate the effects of different hyper-parameters are carried out. This approach is the first
tractable algorithms for computing both the regularized OT objective and optimal maps in large-scale
or continuous settings. Though can be applied on domain adaptation, it is not currently adequate to
compare with the state-of-the-art domain adaptation methods. To dig deeper, a lot of further work
could be done, such as how to add known label information of target domain into current scheme to
make fully use of the prior knowledge, how to adapt different type of data using this approach.
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