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Outline

• Decision Theory

• Logistic regression

– Goal

– Loss function

– Inference

– Gradient Descent 
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F1 F2 F3 F4 F5 Target

Training Data Target Variable

If target variables 
are continuous:

 regression problem


If target variables 
are discrete: 
classification 
problem


F1 F2 F3 F4 F5

Model

Pred

Test Data
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Approach 1: First solve the inference problem of 

 P(X |Yk) and P(Yk) separately for each class Yk . Then 
use Bayes’ theorem to solve:
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Approach 2: Infer               directly from data



• Generative Models

– Computationally demanding: requires computing joint 

distribution over both P(X|Y) and P(Y)

– Requires large training set for high accuracy

– Useful for detecting data points that can’t be explained 

by the current model: anomaly detection/novelty 
detection





• Discriminative Models

– Useful if all we want to do is classification
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How to perform classification with a  
discriminative model

We are given the training data, X = {<X1,Y1>, 
<X2,Y2>, … <XL,YL>} of L examples. 


 

1. Pick a model

2. Estimate the parameters

3. Perform prediction

!6



How to perform classification with a  
discriminative model

We are given the training data, X = {<X1,Y1>, 
<X2,Y2>, … <XL,YL>} of L examples. 


 

1. Pick a model

2. Estimate the parameters

3. Perform prediction

!7



Binary logistic regression model 

Assuming Y can take Boolean values
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One-versus-all classification 

How many sets of W's are we predicting?

Multi class logistic regression model 
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Then P(Y=1|X) becomes

To shorten representation, we can add a column of 
1's as the 0th feature of X so

becomes

Side note
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Sigmoid function 
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Lets plot the logit function

a

Monotonically decreases or increases
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• Range of Logit?


• Relationship with x?

Logit function 

p/(1-p) odds of 
an event y 

given x

• Range of odds?
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How to estimate parameters W = <w0,…,wn>?


• Under GNB assumptions


• General case
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Let’s consider X is a vector of real-valued features 


X= <X1  , X2, … , Xn>





P(Y) ~ Bernoulli(     )

Xi are conditionally independent given Y



Using  conditional 
independence 
assumption and priors
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Since variables have 
Gaussian distribution:
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How to estimate parameters W = <w0,…,wn>?


• Under GNB assumptions: 


1. Variables Xi are conditionally independent given Y


2.  









• General case


A. MLE


B. MAP
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Estimating parameters with MLE

Conditional likelihood 

What's data likelihood?
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Let's write the log conditional likelihood first

Taking the log

Is there a conditional 
independence assumption here?
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One problem: No closed form solution!!!


Objective function that I want to maximize
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Step size

Take partial derivatives with respect to wi
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Gradient descent
First order optimization


Taking steps to the direction of the negative gradient of the function


Suppose we want to minimize  F(x) which is defined and differentiable at 
point z


F(x) decreases the fastest I start from point z and go to the direction of 
the negative gradient of F(z)
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Gradient ascent
First order optimization


Taking steps to the direction of the positive gradient of the function


Suppose we want to maximize  F(x) which is defined and differentiable at 
point z


F(x) increases the fastest I start from point z and go to the direction of the 
positive gradient of F(z)
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Closed 
form 

solution

• The function we want to 
minimize is the parabola 
show in light blue


• The closed form solution 
is available


• Starting from a random 
point on parabola 
gradient descent takes 
steps to reach a local 
minima

Gradient descent
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• Sum over all training examples


• What if I have a large training data


• Summation after each iteration


• Slow!!!! 
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Function I want to minimize

Batch gradient descent

Stochastic gradient descent
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How to pick the training instance?

Stochastic gradient descent update rule?
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• How to pick the learning rate?


• Suppose the features have varying ranges. 
Would that be a problem?
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Stochastic gradient 
descent

• Faster convergence when the training data is 
large


• Learning rate should be low otherwise there is a 
risk of going back and forth


• High accuracy is hard to reach
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Batch gradient descent

• Slow convergence when the training data is 
large


• Guaranteed to reach to a local minimum under 
certain conditions
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How to estimate parameters W = <w0,…,wn>?


• Under GNB assumptions


• General case


A. MLE


B. MAP
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Estimating parameters with MAP

From the prior

Assume P(W) has a Gaussian distribution with zero 
mean identity covariance
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• Defining parameters on W corresponds to regularization


• Pushes parameters towards 0


• Avoids large weights and over fitting 
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Generative versus Discriminative
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Generative

Discriminative 

• Assumes a functional form of P(X|Y) and P(Y)


• Estimates P(X|Y) and P(Y) from data, uses them to 
calculate P(Y|X)

• Assumes a functional form of P(Y|X) 


• Estimates P(Y|X) directly from the data
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Decision Surfaces

Performance as training 
data reaches infinity

Gaussian Naive Bayes
Logistic Regression

Naive Bayes



Things to think about
• Overfitting in LR


• Does LR make any assumptions on P(X|Y)?


• GNB with class independent variances is 
generative equivalent of LR under GNB 
assumptions


• What's the objective function of LR? Can we 
reach global optimum?
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Questions?
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