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Some pictures are from Burr and Aarti’s lectures



Outline

* Basic idea of active learning

» Supervised, semi-supervised, and active
learning

* Uncertainty sampling

* Version space reduction and query by
committee

» Expected error reduction
e Other active learning methods



Why active learning!?

* Learning classifiers using labeled examples
(X1,Y1), (X2,Y2), (X3,Y3),...
* But obtaining labels is
> Time consuming, e.g., document classification

> Expensive, e.g., medical decision (need doctors)

> Sometimes dangerous, e.g., landmine detection



Active learning

* The learner actively chooses which
examples to label !

e Goal: reduce the number of labeled
examples needed for learning
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Can active learning work!?

* Are all labeled examples equally important?
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(Passive) supervised learning
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Semi-supervised learning
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Active learning
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Active learning vs. semi-supervised

learning
e The same goal:

> Attain good learning performance (e.g.,
classification accuracy) without demanding too
many labeled examples

 Different approaches
> Semi-supervised learning: use unlabeled data

> Active learning: choose labeled examples
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Three active learning scenarios

* Query synthesis
° learner constructs examples for labeling
e Selective sampling

o Unlabeled data come as a stream

° For each arrived point, learner decides to query
or discard

* Pool-based active learning (*)
> Given a pool of unlabeled data

° Learner chooses from the pool for labeling



Pool-based active learning
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* A pool of unlabeled samples
* A learned model (or a set of models)
e Choose: which sample to label next?



Uncertainty sampling
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* Uncertainty sampling

> Query the sample x that the learner is most
uncertain about

> How to measure “uncertainty’”?



Uncertainty sampling
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* Uncertainty sampling

> Maximum entmpy [Dagan & Engelson, ICML'95]

¢unT(z) = — )  Py(yla)log, Py(ylz)
Y



Uncertainty sampling
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* Uncertainty sampling

> Smallest margin (between most likely and
second most likely labels) [Scheffer etal., CAIDAD1]

dn(z) = Po(yi|z) — Polyz )



Uncertainty sampling
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* Uncertainty sampling

o Least confidence [Culotta & McCallum, AAAI'05]

¢rc(z) =1 - Py(y™|z)



Uncertainty sampling

least confident [Culotta & McCallum, AAAI'03]
¢rc(z) =1 — Po(y™|z)

smallest-margin [Scheffer et al., CAIDA'01]
om(z) = Po(yy|z) — Po(yz|z)

entropy [Dagan & Engelson, ICML'93]

PENT(T) = — Z Py(y|z) logy Py(y|x)

note: for binary tasks, these are equivalent



Uncertainty sampling
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(a) least confident (b) margin (c) entropy

illustration of preferred (dark red) posterior
distributions in a 3-label classification task

note: for multi-class tasks, these are not equivalent!
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Version space

e The set of classifiers that are consistent
with labeled examples

(b)

Figure 6: Version space examples for (a) linear and (b) axis-parallel box classifiers.
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Recall: uncertainty sampling
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* Uncertainty sampling
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Version space reduction
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* Version space reduction

> Query the sample x that reduces the version most
- “Expected” reduction of version space
* “Worst case” reduction of version space

- “Best-case’ reduction of version space
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A simplifying example
¥ KN #$SsSsO
you need to learn how to recognize fruits
* as poisonous or safe @

* How to query!? Binary search !

X X ¥ S S S GO
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A simplifying example

* Why binary search ?

X X K LSS GO
L £ OO0 ©

> Recall: version space
you need to learn how to recognize fruits
as poisonous or safe

> Maximize the “worst-case” reduction of version space
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Version space reduction for SYMs

“version space duality”
(Vapnik, 1998)

points in F correspond

to hyperplanes in ‘H
and vice versa

F (feature space) ‘H (hypothesis space)
. M| - )
_ SVM with largest margin o
+ i - is the center of the largest v
- hypersphere in V




Query by committee
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* Query by committee
> Keep a committee of classifiers {6, 6, ..., 0}

> Query the instance that the committee members
disagree
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Query by committee

* how to build a committee:

— “sample” models from P(6|L)
* [Dagan & Engelson, ICML'95; McCallum & Nigam, ICML'98]

— standard ensembles (e.g., bagging, boosting)
* [Abe & Mamitsuka, ICML'98]

* how to measure disagreement (many):

— “XOR” committee classifications

— view vote distribution as probabilities,
use uncertainty measures (e.g., entropy)
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Query by committee

e Query by committee

o Keep a committee of classifiers

> Query the instance that the committee members
disagree

* QBC as version space reduction

o Committee is an approximation to the version space

e QBC as uncertainty sampling

> Use committee members to measure the uncertainty
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Expected error (uncertainty) reduction

* minimize the risk R(x) of a query candidate

— expected uncertainty over U/ if x is added to L

expectation over
possible labelings of z

| _
R(z) = )  Ey|Hypsiwun (Y])
uelU
: \

sum over uncertainty of «
unlabeled instances after retraining with z
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Other active learning methods

o Active learning is an active research area ©
» Cost sensitive active learning
o Labeling costs of examples differ
* Batch mode active learning
> Query multiple instances at once
» Multi-task active learning
> Query labels for multiple learning tasks
* See survey of Burr Settles ! [Settles, 2008]
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