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Abstract—1In this work, we consider the problem of fast,
accurate control of a robot with constrained dynamics. We
present a new nonlinear model predictive control (MPC) tech-
nique, Nonlinear Partial Enumeration (NPE), that combines
online and offline computation in a nonlinear version of the
partial enumeration method for MPC, thereby dramatically
decreasing the compute time per control iteration. We apply
NPE to the problem of MAYV flight and demonstrate through a
set of simulation trials that NPE outperforms other fast control
methodologies during aggressive motion and enables the system
to learn a reusable set of local feedback controllers that enable
more efficient operation over time.

I. INTRODUCTION

For robots operating in challenging, real-world environ-
ments, the ability to move accurately and reliably is a fun-
damental capability, necessitating accurate control strategies
that can operate at the timescales required for highly dynamic
systems. As a result, in this work we aim to develop an
intelligent, high-rate, feedback control strategy that enables
accurate and increasingly efficient operation.

Traditional feedback control strategies can run at very
high rates due to their simplicity. However, to achieve this
level of simplicity, these approaches are purely reactive and
typically do not account for system limitations (e.g., actuator
constraints). As a result, they can lead to degraded perfor-
mance in more challenging settings outside their nominal
operating regime. Conversely, optimal control techniques do
explicitly look ahead and consider such constraints but incur
a computational penalty. Model predictive control (MPC)
seeks a middle ground by casting the control problem as
a finite horizon constrained optimization. MPC ensures the
generated commands obey actuator and operating limits
by optimizing over the predicted evolution of the system
dynamics.

While MPC was traditionally applied to systems with slow
timescales, recent advances have made this a viable control
strategy for systems with timescales on the order of millisec-
onds, such as agile autonomous robots. Many of these fast
MPC techniques can be classified as either online or offline
approaches. Online methods seek to reduce the solution time
through standard optimization techniques, including warm-
starting the solution using a previous solution [1], exploiting
problem structure, and trading speed for optimality [2], but
the dependence on optimization in an essential control loop
can lead to reliability and certifiability concerns. Offline
approaches, referred to as explicit MPC, precompute a sim-
ple control law (e.g., piecewise-affine [3] or via function
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approximation [4]) that reproduces the MPC solution in
different regions of the state-space, thereby avoiding online
optimization entirely. While these controllers are very fast
and easily certifiable, they are known to scale poorly even for
low-dimensional problems [4, 5]. Partial Enumeration (PE)
MPC [5] seeks a balance between the online and offline
methods, using infrequent online optimization to update a
bounded explicit MPC mapping.

However, these fast MPC approaches are typically lim-
ited to linear systems, and although they can be applied
to nonlinear systems via linearization, the accuracy of the
resulting motion is heavily dependent on the fidelity of the
prediction model used. This naturally motivates the use of
nonlinear MPC (NMPC), as the nonlinear motion model will
predict system evolution more accurately than any linear ap-
proximation about a nominal operating point. Many NMPC
approaches use sequential quadratic programming (SQP),
and as a result, share similarities with other techniques
based on local quadratic approximations, such as DDP [6],
LQR-Trees [7], and ILQR [8]. However, online optimization
using the nonlinear model comes at the expense of added
computational complexity, while offline approaches suffer
from the same limitations as explicit MPC, in addition to
increased offline computation [9].

Therefore, in this work we present Nonlinear Partial Enu-
meration (NPE), a NMPC technique that combines online
and offline computation to yield a nonlinear version of
Partial Enumeration MPC, thereby dramatically decreasing
the solution time per NMPC iteration and making it vi-
able for use on systems with dynamics that evolve on the
order of milliseconds. The proposed approach leverages a
parallelized structure, ensuring that a feasible solution is
returned at the required rate while employing slower opti-
mization techniques to learn local control laws that capture
the functionality of standard NMPC. Using the problem of
aggressive MAV flight as a guiding example, we leverage
this formulation to demonstrate through a set of simulation
trials the functionality and performance of NPE, as well as its
ability to enable online learning of reusable local feedback
control laws.

II. NONLINEAR PARTIAL ENUMERATION

In this section, we present a novel nonlinear extension of
the Partial Enumeration (PE) technique [5] to construct on-
line a piecewise-affine control law as the solution to a NMPC
problem. Just as linear PE leverages explicit MPC techniques
based on multi-parametric quadratic programming (mp-QP),
we employ ideas from explicit NMPC to combine solutions



to a nonlinear program (NLP) with local mp-QPs [9], thereby
reducing the number of NLPs that must be solved online.
We first formulate a finite horizon NLP to compute the
control sequence {uy,...,uy} given the current state X
and references rq,...,ry (e.g., from a desired trajectory),
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where the differential equation constraint is enforced via

numerical integration. The resulting optimal control sequence
must satisfy the first-order KKT conditions
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where X is a vector of Lagrange multipliers, L(x,r,u, A) =
J(x,r,u)+ ATg(x, u) is the corresponding Lagrangian, and
A = diag(A). In a standard online NMPC framework, the
first element of this sequence would be applied and the
problem re-solved from the updated state.

Instead, given a sequence of control inputs {uj} that are
the solution to (1) at x*, we define difference variables x =
Xx—x* r=r—x% and u = u— u* and formulate the local
QP as
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where Q and R are given by the Hessian of J(x,r,u)
and A, B, Gy, Gy, gx,gu are given by the linearization of
f(x,u) and g(x,u) about {uj} and x*. To simplify the
formulation, we note that the linearized dynamics over N
steps can be rewritten as * = Axy + Bu, where
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Additionally, let H = B'OB + R, where Q@ =
diag(Q, ..., Q) and R = diag(R, ..., R) of the appropriate
dimensions, and h = BTQ(AXO — r), where 7 is defined
analogously to x. Similarly, let Gx = diag(Gy, ..., Gx),

Gu = diag(Gua"'vGu)’ gx = [gi?"'agi]T7 gu —
[gﬂ,...,gfl]T, and
= |:ng:| _ |:gx - ngXO:|
Gu 9u

We can then rewrite (6) in an equivalent form (dropping
constant terms in the cost function) as

1
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This form facilitates writing the KKT conditions (2) and
(3) for the local QP as

Hu+h+TTA=0
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If we only consider the active constraints (i.e., with A > 0)
for a given solution, we can reconstruct « and A by solving
a linear system derived from (8), where the subscript a
indicates rows corresponding to the active constraints
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Assuming the active constraints are linearly independent
(Bemporad, et al. [3] suggest alternatives if this assumption
fails), the resulting local QP control law u* is affine in X
and r. If we denote the NLP solution as wuyy, the overall
control law x(xg, r) then consists of an affine feedback term
computed via the local QP and a constant feedforward term

determined by the NLP, which we can combine into gain
matrices K; and K5 and a feedforward vector k¢

k(Xo, ) = u* (X, T) + unL

=Kixo + Kor + k¢ (10)

However, since the feedback term is derived from a local
approximation, we must determine the region of validity
of this solution. A similar region is computed in mp-QP
explicit NMPC [9] by formulating additional optimization
problems to find hard bounds on the suboptimality of u*
relative to the NLP solution. However, this is intractable for
online computation. We instead follow PE and determine
the region of validity by first checking the remaining KKT
conditions (4) and (5) for the local QP. We can then further
restrict the region of validity via commonly used measures of
suboptimality, such as the KKT tolerance criteria used to de-
termine when to terminate iterations in sequential quadratic
programming [10]
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where € and d are predefined tolerance parameters.
Introducing these nonlinear KKT criteria enables us to
extend the state of the art for fast NMPC by defining a
Nonlinear Partial Enumeration (NPE) strategy, as described
in Algorithm 1. As in linear PE, we aim to construct a
mapping M from regions of the state space to local, affine



Algorithm 1 Nonlinear Partial Enumeration

1: M <+ 0or Mprior

2: solution_found < false

3: nco_running < false

4: while control is enabled do

5 Xp < current system state

6: T < current reference sequence
7: for each element m; € M do
8
9

Compute u, A via (9)
if xo,r satisfy KKT criteria (4), (5) applied to
(7) and (11) then

10: importance; < current time, sort M
11: solution_found < true

12: Apply affine control law (10) from m;
13: break

14: end if

15: end for

16: if solution_found is false then

17: if nco_running is false then

18: Start Alg. 2 (parallel thread)

19: end if

20: Apply intermediate control via linear MPC (13)
21: end if

22: end while

Algorithm 2 NPE: New Controller Optimization

nco_-running < true
unL. < Solution to NLP (1) at x
(K1, Ko, ke) < Local QP (7) solution about X¢, unr
if NLP and local QP solutions are found then
if | M| > max table size then
Remove element from M with minimum
importance
end if
Add new element Moy =
(%0, K1, Ko, ki, importance) to M
9: end if
10: nco_running < false
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controllers. Each element in M is defined by a nominal
state, an affine controller, and an importance score that
is used to order the elements. Intuitively, the system is not
expected to transition between regions frequently, so we
choose to order the elements by when they were last used
(Pannocchia et al. [5] discuss other strategies). M can either
be initialized as an empty set or with information from
previous runs to reduce the need for online optimization.
In each control iteration, we first evaluate the KKT criteria
at the current state and reference for each element in M
(lines 7-9). If any element satisfies the criteria, we update its
importance value to the current time (line 10) and apply
the corresponding affine controller (line 12). In this case, no
online optimization is required to generate a locally optimal
feedback control law.

If none of the elements satisfy the criteria, we use a

parallelized approach to compute and add a new element
to M, without blocking the main control loop. As described
in Alg. 2, we solve the NLP and local QP (lines 2-3), and
in line 8 add the corresponding element to M (as defined
in (10)). To control the amount of time spent querying the
mapping, we can restrict its size and, if necessary, remove
the lowest-importance element prior to adding myew, as
shown in lines 5-6.

While the new element of M is being computed, we use
an intermediate controller to quickly compute suboptimal
commands that ensure stability and constraint satisfaction
(Alg. 1, line 20). The intermediate controller is formulated as
a linear MPC with a shorter horizon N and soft constraints:

N
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The bounds on the control inputs are enforced as hard
constraints to ensure the resulting commands are feasible,
while slack variables c; are added to the state constraints
to allow violations with some cost penalty P. The slack
variables are unconstrained to ensure existence of a solution.

As in the local QP, this can be re-written such that u; and
¢y, are the only decision variables,

1 1
argmin iuT’Hu +hTu + §cT’Pc

(13)
st. Tu—c<~

where P and c aggregate P and cy, respectively.

As this process iterates, M will be populated by the most
useful elements, reducing the dependence on the intermediate
controller. The combination of controllers queried from M
and the intermediate controller ensures the existence of a
locally optimal feedback controller at every iteration. Since
the computationally expensive components of the algorithm
are run in parallel, NPE will compute high-rate, stabiliz-
ing commands at all times, thereby enabling fast, nearly
optimization-free but minimally-suboptimal control that im-
proves over time.

IIT. APPLICATION TO MAV FLIGHT

To illustrate the performance of our proposed NPE ap-
proach, we consider the specific case of a quadrotor micro
aerial vehicle (MAV) tracking aggressive trajectories. The
dynamics of a quadrotor can be modeled as a 12 dimensional
nonlinear system whose state x = [p7 v’ &' wT]T
consists of position (p), velocity (v), attitude (§ =
[0 0 w]T), and angular velocity (w). Attitude is repre-
sented by roll (¢), pitch (0), and yaw (¢/) angles following the
ZYX convention. The control input u = [F 77| consists



of thrust along the 4z body axis (F¥) and moments about
each of the 3 body axes (7 = |15 79 T¢]T). The system’s
time evolution is governed by X = f(x,u), where

p =v

v = iFVI:{EEE:;*geg
— . m

w =J1 1 - wxJw)

The constants g, m, and J denote gravity, vehicle mass, and
inertia, respectively. The vector e3 is the third column of the
3 x 3 identity matrix, R¢ denotes the rotation matrix formed
from the ZYX Euler angles £ that takes vectors from body
frame to world frame, and S¢ is the inverse of the Jacobian
that relates ZYX Euler angle rates to angular velocities [11].

To formulate the NMPC problem, we select a standard
linear-quadratic cost function

J(x,r,u) = 1(X -n)'Q(x —r)+ %uTRu

2

and define g(x,u) to enforce the following constraints

Vinin <V < Vinax

€min S 5 S Smax
Umin S u S Umax

By using (14) as the dynamics constraint in (1), the controller
will directly compute force and moment commands from r,
without the need for intermediate commands often seen in
quadrotor control [11].

IV. RESULTS

To assess the performance of our proposed NPE algorithm,
we conducted a series of quadrotor flights using a high-
fidelity simulation environment. The simulator and controller
are built around ROS [12], and the controller uses the
NLopt [13] library to solve the NLP and qpOASES [14] for
the local QP. The simulation is run on a 2.9 GHz Intel mobile
processor. In practice, quadrotor attitude controllers are often
run at high rates (e.g., greater than 200 Hz) for reliable
stabilization. Since our formulation directly computes the
forces and moments (as an attitude controller would, see
Sect. III), we require the controller to return solutions at
200 Hz. Given the relative degree of the quadrotor dynamics,
we choose a ten-step prediction horizon with a step size of
20ms, thereby allowing the controls to have a non-trivial
effect on position states over the course of the predicted
motion.

We first consider a scenario (shown in Fig. 1) in which
the quadrotor must track a linear trajectory that requires
increasing speeds every lap (ranging from 0.6 m/s to 3.0 m/s).
We compare the performance of NPE against a proportional-
derivative (PD) controller and linear MPC. The linear MPC
follows the formulation in (13) and uses the same parameters
as in NPE. It uses a model of the system dynamics that
is linearized about the nominal hover state and commands.
These controllers are chosen as they can achieve the 200 Hz
update requirement. A standard NMPC implementation is
three orders of magnitude slower due to the NLP solver (see
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Fig. 1: Reference trajectory for the first test scenario

Table I), and therefore is not viable for comparison in this
scenario.

As Fig. 2 illustrates, PD control is able to track the
trajectory well at lower speeds but degrades at higher speeds
due to overshoot and the resulting large oscillations. Linear
MPC does not exhibit this overshoot, due to its predictive
model. However, it does suffer from sustained tracking error
and large roll angles due to the choice of linearization point.
Linearizing about a non-zero roll command can actually
eliminate this error in one direction, but consequently in-
creases the error during the return lap. Since NPE uses
the NLP to provide a feed-forward term when computing
a new controller, the linearization point for the local QP
and resulting feedback controllers is chosen intelligently,
resulting in reduced tracking error and less severe roll angles.

To better illustrate NPE’s ability to learn, use, and reuse
controllers, we consider another scenario in which the
quadrotor is repeatedly commanded to take-off and land
aggressively, i.e., by commanding a 1.5m step change in
the desired altitude. NPE is initialized with an empty set
of controllers, and Fig. 3 shows the evolution of the control
strategy over repeated takeoff and landing sequences. The
first column illustrates the dependence on the intermediate
controller, while the remaining columns correspond to the
online computed controllers as they are added to the mapping
M. The first local feedback controller is computed about a
common operating mode (near hover, away from all con-
straint boundaries) and is analogous to a finite-horizon LQR
solution. Consequently, it is applicable to non-aggressive
portions of the test scenario, as is shown by the high usage
times in the second column, but still requires substantial use
of the intermediate controller for aggressive motion (nearly
a 2:1 ratio for usage duration). However, as additional,
specialized controllers are computed, NPE’s reliance on the
intermediate controller decreases until the system operates
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Fig. 2: Comparison of position, trajectory tracking error, and attitude for the three controllers considered (PD, Linear MPC,
and NPE). NPE yields substantially improved tracking performance with reduced overshoot and oscillations.

solely using the learned local feedback control laws.

Although this takeoff-hover-land maneuver only activates
the constraints on z-velocity and thrust, as shown in Fig. 4,
NPE computed 36 different controllers corresponding to
combinations of these constraints over the prediction horizon.
More diverse maneuvers will activate far more constraints,
especially due to the coupling in the nonlinear dynamics,
further emphasizing the need for a bounded set of candidate
controllers. Figure 4 also shows that NPE largely satisfies
these constraints. The minimal violations observed are due
to unmodeled dynamics (such as the motor time constant)
resulting small prediction errors. However, this effect is
independent of the NPE formulation and further illustrates
the importance of model fidelity in predictive control.

These learned controllers can be reused in subsequent
trials, enabling the NPE-controlled system to leverage previ-
ous computation to operate more efficiently. Figure 5 shows
the controller usage for another set of takeoff and landing
sequences where NPE is initialized with the set of controllers
learned in the previous trials. As expected, the system imme-
diately leverages the previously computed controllers, and as
a result, the intermediate controller is never applied. Figure 6
shows an overlay of the transitions between controllers for
these takeoff and landing sequences, illustrating a consistent
behavior in terms of controller switching. The slight varia-
tions in the switches can be attributed to the overlap between
the valid regions for the learned controllers. This is an effect
of the nonlinear dynamics model and KKT tolerance criteria,
and removing these overlaps and any redundant controllers
is an avenue for future investigation.

One of the key performance metrics for NPE is solution
speed. The low computational cost of NPE is illustrated in
Table I, which provides statistics on the compute times per
component of NPE (controller query, intermediate controller,
NLP, local QP, and adding a new controller) for the scenario
shown in Fig. 3. The controller query and intermediate
controller easily achieve the requisite 200 Hz, while the more
computationally expensive components are run in parallel

with decreasing frequency. The first row of the table also
shows that the NLP is only solved 36 times, which is in
stark contrast to standard NMPC solutions that would require
solving the NLP in each of the 20807 control iterations.
This demonstrates that NPE is an effective real-time model
predictive control methodology for nonlinear dynamic sys-
tems, such as a quadrotors, where linearity assumptions are
degraded during aggressive motions.

V. CONCLUSIONS AND FUTURE WORK

In this work, we have presented Nonlinear Partial Enu-
meration (NPE) as a fast solution strategy for nonlinear
model predictive control (NMPC). NPE extends the linear PE
algorithm to use a nonlinear model for more accurate motion
prediction and, with minimal online optimization, produces
a piecewise-affine controller covering the relevant regions of
the state-space. Through a set of simulation studies focused
on aggressive trajectory control for a quadrotor micro aerial
vehicle, we have demonstrated that NPE outperforms other
fast control methodologies and enables reuse of learned con-
trollers in subsequent flights, thereby reducing the overhead
associated with re-solving the optimizations online.

Finally, while the preliminary results we have presented
demonstrate the core functionality of NPE, the natural next
step is to evaluate performance through experimental trials
in challenging, real-world environments to demonstrate its
utility as an intelligent, high-rate, feedback control strategy
that enables accurate and reliable operation. We will also
investigate strategies for mitigating the effects of unmodeled
dynamics on system performance via extensions to the NPE
formulation.

TABLE I: Solution times for NPE, including the number of
control iterations over which the statistics are computed.

Query Interm. NLP LocalQP AddElement
Iterations 20807 1061 36 36 36
Mean (ms) 1.107 0923 1412.6  6.232 1.404
Std. Dev. (ms) | 0.678 0.781 1063.5 1.310 0.827
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Fig. 3: Total time a controller is applied (in seconds, indi-
cated by color) during a sequence of similar actions. The first
column (index 0) corresponds to the intermediate controller,
while index 1 corresponds to the first computed controller.
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