Speculative Load Motion using Natural Language Hints

Alejandro Carbonara

1 Introduction

Compilers rely on instruction scheduling algorithms in order
to decide how to allocate their processing cycles. Load in-
structions tend to be a challenge for such algorithms, as there
can be a bottleneck when there are many load instructions
for a limited number of load units. We aim to mitigate these
stalls by moving the required loads earlier in our code. Any
latency in stalls will be disguised by the additional time weve
allocated to them. In the ideal scenario this will not take addi-
tional time because we are merely using time where our load
unit would be otherwise unoccupied.

Merely moving these loads within the same basic block
should not make a difference under a good instruction
scheduling algorithm. Therefore, we aim to move our loads
back to an earlier basic block. However, there is some in-
herent risk in this kind of code motion. First of all, there is
additional register pressure. Therefore, we will not want our
new position to be too far before our old positions. Second,
moving a load instruction to another basic block may not nec-
essarily win, as it may end up being executed unnecessarily if
the load branch is not taken. However, if we can predict the
probability that each branch is executed, we can determine
where it is beneficial to speculatively move the load instruc-
tions earlier. Inspired by previous work [7]] where variable/-
function names are used to predict programmers coding deci-
sions, we explore using variable names for branch prediction
in this work.

1.1 Our Approach

In this project, we speculatively move load instructions with
the help of branch prediction. Our system consists of two
parts - a load-instruction motion program and a branch pre-
diction classifier. The load-instruction motion codeflow is
shown in the Figure[Ta]. We move load instructions in LLVM
bit-code that satisfy certain requirements if the load branch
is likely to be taken. To predict whether a branch is likely
to be taken, it extracts the related variable/function names
and passes them to the classifier for prediction. The classifier
training part is shown in the Figure We instrument pro-
grams and run them to collect variable/function names and
branch-taken ground truth. We then train a simple decision
tree classifier on this data.

Wenlu Hu

Jiyuan Zhang

1.2 Our Contributions
Our contributions include:

o We designed and implemented a load motion algorithm
that improves code performance in experiments.

e We explored the possibility of basing branch predic-
tion on natural language hints - function/variable names.
This is novel to our best knowledge. We designed and
implemented this idea into our load motion algorithm.

e We instrumented a body of Java code and run them to
collect training data for branch prediction. We trained a
decision tree classifier on this data and included it in all
the experiments.

e We have evaluated the system we implemented and
shown that it improves code performance by up to 9%.

e We have done a thorough study with experiments on
what factors impact the performance of load movement.

1.3 Related Work

Previous work has shown the benefits of moving the computa-
tion of loads back. Srinivasans work [11]] proved that instruc-
tion scheduling loads earlier can result in hiding latency for
cache misses, avoiding a similar bottleneck. This has lead to
other applications of scheduling loads as to safeguard against
cache misses, such as in Winkles work [13] in applying the
idea to software pipelining.

The informativeness of natural language hints is explored
in Fus [7] work. They use the hints in Microsofts C#
programs to predict whether a runtime exception should be
logged. Their work uses these hints for software engineering
problems instead of compiler optimization. By simply split-
ting variable names into natural words and training a simple
decision-tree, they get a significant improvement in predic-
tion accuracy. While their work inspired ours, our training
part is much more difficult than that in their work. (Note that
Wenlu is a coauthor of their paper.) First, our work requires
modifying training program (our data source, the program
that we instrument and collect training data from), compil-
ing and running them, while they only need static analysis.
Second, we need change our implementation for each open-
source training program we found, as they are all different,
e.g. directory organizations. They do not need to do this as
they have access to a large amount of uniform commercial
programs.

LLVM
BitCode
Features
(including
variable names)
\ oz
Load Motion Classifier
i (Machine
(using branch Leaming
prediction info) /

Which branch is
more likely to be
taken.

Executable |

(a) Load-instruction Motion

Some Java codes]

Instrument
and run to
collect trace

Static analysis

Which
branch is
taken.

Variable
names

Train on
this data

Classifier
(Machine Learning

(b) Classifier Training

Figure 1: System Workflow

2 Our Design

We instrument programs we get to help us collect necessary
data. To be specific, we added logging instructions to each
if statements in the programs as to document which then/else
branch has been taken and to store the condition (e.g. file
!= null) leading to this branch. We use two different ap-
proaches to do this - one using Soot [12]] Java optimization
framework and the other using a Shell script. The first ap-
proach has a better coverage and is more extensible, while
the second deals with programs with complicated compila-
tion process.

With Soot we first find all if statements in a pass. In
Soot IR, if statements take the form of if (...)goto
(...) we add System.out.println("!then!"+
condition) right after the if statement, and
System.out.println("!else!"+ condition) {
after the target of the goto. But if the target of the goto is
also a goto statement, we will skip instrumenting this if as
the added logging instruction will never be executed. This
approach operates at Soot IR level and covers a variety of
cases in source codes. But it involves changing compilation
options to preserve the variable names in source code
while converting to IR. Running codes instrumented by this
approach also involves modifying the original java-to-jar
compilation-linking process, as instrumenting only outputs
.class files instead of .java files. So we use this approach for
codes that compiles with javac. For codes that compiles with
Apache Maven [2]] or Apache Ant [1], the time cost to learn
the compilation projects is too big for this course project, so
we choose the second approach.

With Shell script, we use sed command to look
for patterns if (...) We insert a logging in-
struction System.out.println (" !checking!"+
condition) before this line, and a logging instruction

System.out.println("!then!"+ condition) after

!'then!
lelse!

path != null
file.canOpen() == null

Figure 2: Example Logs

this line. In the log, if a !checking! is seen without a !then!
following it, we know that the else branch has been taken.
This approach covers fewer cases than the first one, such as
multi-line condition of if. The advantage of this approach
is that it changes source codes instead of IR, so the original
compilation process works out of the box even after code
changes. We used this approach to instrument benchmarks in
DaCapo Benchmark Suite [5] which compiles with Apache
Ant [1l. We also tried this approach on other projects as
described in the Surprise Section.

2.1 Trace Collection

After instrumenting the programs, we recompile and run
them, while collecting the logs they produce. Figure 2] shows
some examples of the logs. The first log means the condition
path != null is evaluated and the then branch is taken.
The second log means the condition file.canOpen ()==
null is taken and the else branch is taken.

We then break the variable names in the logs into
words. Non-alphabetical characters indicate word bound-
aries and capital letters indicate the beginning of new words.
The variable/function names are mostly well formatted as
file.canOpen(). Most words we get are indeed natural lan-
guage words. We use the logs as our training data our training
data. Our logs contain about 2687 + 159661 data points and
a vocabulary of 22 words.

2.2 Training

We use the bag-of-words model to convert these words into
features, that is, only the occurrences of the words are con-
sidered. The order in which they appear are ignored. On
this data, we then train a decision tree classifier for which
branch is more likely to be taken. We use the C4.5 [10] deci-
sion trees in Weka [8] machine learning framework. As our
training data is limited 22-word vocabulary, we limit the de-
cision tree to be of size 3, i.e. the classifier only looks at three
words before making a decision. The small decision tree that
learned on our limited training data chooses the word can as
one of the three words it would look at. It decides if this word
shows up in the variable names, the then clause is more likely
to be taken. The classifier has a 99.9% accuracy on training
data. Although more experiments on cross-validation and di-
verse testing data are needed to prove the accuracy of this ap-
proach, we believe this number still shows that this approach
is promising given that we limit the size of the decision tree
to only 3.

2.3 Speculative Load Motion

We implement our code motion in LLVM [9]]. To simplify
the problem, we limit the code motion to only one basic block
away. In order to move a load from Basic Block BB1 to an
earlier Basic Block BB2, we require all of the following con-
ditions to hold:

Basic Block BB2 is a predecessor of Basic Block BB1 ,
and dominates BB1. We get the dominance information in
advance from a previous pass. The code is recycled from
Homework 3.

From Basic Block BB2, the branch BB1 is more likely to
be taken than other branches. We use machine learning to
predict which branch is more likely to be taken. We extract
the variable names in the condition of if statement, and query
the classifier we trained from the last step. The condition
of if statements in C code is usually broken into several in-
structions in LLVM. So we start from the branch instruction,
and trace back recursively. Some original variable names are
changed when converted to LLVM, but function names are
not. So we use the name of the closest function call instead.

While calculating the address operand of the load, no side
effects are involved. For example, if the address is calcu-
lated by a function call, we should not move this load as this
function may introduce side effects. We start from the load
instruction and trace backwards to put all instructions in the
same basic block that the load instruction depends on into a
stack. In the process, we check if any of these instructions
has a side effect.

If all these requirements are satisfied, we move a load in-
struction to the earliest position in Basic Block BB2 that data
dependency permits. Along with the load instruction, we also
move the instructions that it depends on. These instructions
are put into the stack when we look for side effects. For data
dependency issues, we move these instructions in the order of
their appearance in the source code, i.e. popping them out of
the stack.

2.4 Advanced Branch prediction

Additionally, we created an advanced version of our load mo-
tion algorithm that could take into consideration more precise
branch prediction information. If we are able to know the ex-
act probability that each branch is taken, we can then use that
to better determine the expected benefit from moving a load
back. In cases where we might move our load back several
blocks, we would need to consider the probability that our
load may have be needed coming many different paths.

For this, we developed a dataflow computation that would
predict the probability that a load was expected at any given
point of our code. Our dataflow differed from the ones in
class in several ways.

Lattice: It was more complex, associated a float repre-
senting the probability of being expected to each instruction.
Due to the nature of floats, our lattice had no top element and
the height was potentially infinite. Getting an exact solution
would be potentially impossible, so we simply ran our pass a
number of times in order to get an approximate solution.

Meet function: When we met up along two paths, the new
value for an instruction would be the weighted average of the
value of the instruction on each path. Our meet function de-
pended highly upon the structure of the lattice.

Transfer function: If we have a load within a basic block,
we set the probability that the load was expected as 1. Our
transfer function was monotonic, so we could guarantee that
there would be no oscillatory effects.

We found that this dataflow algorithm was impractical due
to the difficulty of getting exact values for our branch predic-
tion. In the end, our dataflow algorithm was implemented but
left unused.

3 Experimental Setup

We instrumented two benchmarks from the DaCapo Bench-
mark Suite [5] using source-code-level script, and two ex-
ample Java programs, Airline Example and Simple Word
Count, from [3]] using Soot [12] Java optimization frame-
work. Speculative Load Motion

We use -O0 option to disable all automatic optimization
for all experiments as to show the improvement we make. We
run the m2r memory-to-register pass to all test programs, both
original test program and our optimized version. Simulator

The performance gain of load scheduled program is hard
to measure directly on real system. Therefore, we resort to
a simulator to get more accurate results. The simulator we
use is Sniper [6]], which can simulate x86 architecture using
trace-driven methods. We also use the Pin tool to help us
collect the execution trace for analysis.

3.1 Micro-benchmark

The performance of load scheduling is hard to measure on
normal JAVA program. Therefore, we wrote our own mi-
crobenchmark by adopting some JAVA program features.
The microbenchmark is written in C with Java naming style,
where a load instruction is in a branch that is almost always
executed. The pseudo-code for this program is shown in Fig-
ure 3| We use this as our test data for all further experiments
except otherwise noted.

int loo) l L1 Cache \ 2 kB \ 16 kB \ 32 kB ‘
p(someList) {
for 1 = 0 to 90000 Original 201952681 57494225 55288154
fileIndex = some computation of i Optimized 184153968 | 56021472 | 55097846
if canOpen (fileIndex) Improvement 8.8% 2.6% 0.3%
someElement = somelList[some map of Miss rate 10.8% 0.22% 0.08%
il //LOAD
} printf (someElement) Figure 5: Varying Cache Size
int main() {
int weightList[10000]; [LI Cache access latency | 4 [16 |
loop (weightList); Original 201952681 | 280078006
} Optimized 184153968 | 261150173
Improvement 8.8% 6.7%

Figure 3: Pseudocode of the Test Program

| | Manually [With LLVM |

Original 237725846 | 201952681
(5228815) | (14958511)
Optimized | 219967129 | 184153968
(8424704) | (6105917)

Improvement 7.5% 8.8%

Figure 4: Whole System Evaluation

4 Experimental Evaluation

We compare the cycles taken to run the original test program
and the optimized version where load instructions are moved.
We experimented with many different parameters of the ex-
periment and tuned our system accordingly. Figure] shows
the performance improvement where our system works the
best. Results are average of 3 runs for all experiments, and
the numbers in the brackets are standard deviation. We com-
pare our system with a baseline where load instructions are
moved manually in the C code. We show that moving a load
instruction with our LLVM implementation works as well as
moving the load instruction manually. Our LLVM implemen-
tation gives 8.8% performance boost, where the manual ap-
proach give 7.5%. This difference is within error bar, given
that the variance of some measurement is high.

Different factors that impacts our performance The load
scheduling performance is affected by multiple factors. In
this part, we evaluate the performance of our load scheduling
optimization under different configurations.

4.1 Cache size

The cache size has an impact on the miss rate of data access,
inducing longer load latency. This can influence how much
benefits the achieve by moving load instructions ahead. Fig-
ure [5] shows the performance of our system under different
cache size settings.

As the L1 cache size increases, we see less performance
improvements by moving load instructions ahead. The reason
is with smaller cache size, the program encounters more L1
cache miss. The load instruction has larger average latency.
Therefore, it benefits more by moving the load instructions
ahead. When the L1 cache size exceeds 16KB, it can hold
the entire array in L1. The benefits drop as the cache size

Figure 6: Varying Cache Latency

increases.

4.2 Cache/Memory access latency

The Cache/Memory latency factor will have similar effects on
the load scheduling optimization as the cache size factor. It
influences the load scheduling performance by affecting the
average load latency. Figure [6]shows the performance of our
system when we change the L1 cache access latency.

Increase the L1 cache access latency can highlight the ben-
efits of moving load forward. But on the other hand, the la-
tency should not be too large, otherwise the memory access
would dominate the program execution time.

4.3 Window size

We show the performance of our system with different win-
dow sizes in Figure In out-of-order processor, multiple
instructions can be dispatched at the same time. As long as
there are no dependences between them and there are avail-
able resource, the instructions can be issued simultaneously.
This is hardwares mechanism to dynamically exploit instruc-
tion level parallelization. The dispatch window size puts a
limitation the parallelization level. The larger the window
size, more instructions can be potentially executed simultane-
ously and thus more likely the load latency can be overlapped.

As can be seen from the experiment results, the larger the
window size, the less gain can be achieved by moving load
instruction forward, because the hardware can still issue the
instructions that are not depend on the load when a load in-
struction is stalled.

4.4 Computation overlap

We explore how our system performs when the number of
computations overlapping with the moved load instruction
changes. The results are shown in Figure [§] How early can
we move the instruction forward is the tradeoff between two

| window size | 8 [20 |
Original 201952681 | 166992948
Optimized | 184153968 | 169497842
Improvement 8.8% 1.5%

Figure 7: Varying Window Size

| | Original [Double |

Original 8331314 | 9359179
Optimized | 8203833 | 9694601
Improvement 1.5% -3.4%

Figure 8: Varying overlapped computation

factors: 1). The earlier we move the load instruction, more
computation instructions can overlap with load latency; 2).
The earlier we move the load instruction, the larger register
pressure we will suffer. Actually, if we move the load instruc-
tion too early such that the loaded data will not be used in the
recent future, the compiler might split the register to mem-
ory. When the loaded element finally be used, it has to be
re-loaded from the stack, which is again an memory access.

Doubling the computation instructions, we intended to see
more computation being overlapped with memory access and
thus result in more performance gain. But to our surprise,
doubling the computation even get our worse performance.
More experiments are needed to gain a thorough understand-
ing of this result. One explanation of this result might be that
although memory access latency is 75 cycles, the latency to
access L1 and L2 are only 4 and 20 cycles separately. If a
load instruction only accesses L2, the original computation ()
is enough to hide the latency. So doubling the computation
would not hide the latency better. Meanwhile, after doubling
the computation and moving the load instruction before all
the computations, the register live range is further extended.
This side effect may have caused the optimized version to
slow down.

4.5 Number of loop iterations

When we first designed the testing program, we used a small
iteration number and small array size. We expected to see
the performance gain but failed. The results are shown in
Figure 0] When the iteration number or array size is small
(900 iterations and 100 array size), almost no difference can
be observed.

By comparing the runtime trace and assembly code, we fi-
nally figured out the reason is that besides those array load
instructions in the program, these are also many other unex-
pected load instructions that are either created by the com-
pilers or induced in the execution runtime (i.e., load/store in-
structions to split intermediate register variables from/to stack
because of lack of registers; initialization related instruction
at the start of a function/program; instructions related to dy-
namically linking to library). When the program is small,
those loads took a large part in the program. As a result, they
overshadowed the optimization of load movement.

We made modifications to the program intending to high-
light the benefits of load movements: We tried to use register
types, in order to force the compiler to keep the intermediate
variables in register, not to repetitively split into memory. We
increase the iteration count of the program, in order to offset
the effects of initialization overheads. We increase the array
size, such that it is much larger than the L1 cache size. This
is to magnify the array load latency.

[#ofiterations | 900 [90000 |
Original 4067345 | 201952681
Optimized 4023783 | 184153968
Improvement 1.0% 8.8%

Figure 9: Varying Number of Loop Iterations

| Sizeofarray [100 | 10000 |
Original 18813495 | 201952681
Optimized 19483878 | 184153968
Improvement -3.2% 8.8%

Figure 10: Varying Memory FootPrint

4.6 Memory footprint

To understand how the LOAD motion optimization reacts to
the memory footprints of test programs, we change the size of
the arrays in the test programs and measure the performance
improvement again. The effects are similar to changing cache
sizes. When the memory footprint is small, almost everything
fit into the L1 cache. Most load instructions are very fast as
the data is already in L1. So moving LOADs around does not
help. Instead, it hurts performance (likely due to the expan-
sion of variable live ranges).

4.7 Distances the instructions are moved

Our basic version of load motion only moves load instruc-
tions to a spot one block away. This limitation prevent it from
taking advantage of all optimizing opportunities. To study
whether allowing a bigger moving distance will improve the
performance even more, we try different load motion distance
in terms of number of basic blocks, in this experiment. The
test program we used in previous experiments does not pro-
vide opportunities to move more than one basic block. So we
create a new test program with nested ifs just for this experi-
ment. The pseudo code is shown in Figure [IT]and the results
are shown in Figure

We use window size of 20 in this experiment. Although we
do not see performance improvement in any case, we do see
that moving load instructions further away only makes things
worse. This is consistent with our observation in experiment
d). These two experiments show that our decision of moving
load instructions only one block away is a close-to-optimal
solution.

S Surprises and Lessons Learned

5.1 Address-calculation Instructions

The very first time we ran our algorithm over our test data,
we found that no loads were set to move. Looking into the
bitcode of our program we found that that was because for
even the simplest load actions, there would often be compu-
tations needed in order to get the memory location to load.
For example, a single instruction accessing the nth position
of an array would result in two instructions in the bit-code:
one to get the memory location and a second to load. The
loads dependency on the first instruction made it no longer a
candidate for motion.

int loop(somelList) {
for i = 0 to 90000
fileIndex = some computation of i
if canOpen (filelIndex)
fileIndex = some computation of i
if canOpen (fileIndex)
fileIndex = some computation of i
if canOpen (fileIndex)
fileIndex = some computation
of i
if canOpen (fileIndex)
someElement =
somelList [some map of
i] //LOAD
printf (someElement)
}
int main() {
int weightList[100007];
loop (weightList) ;

Figure 11: Another Test Program

| Distance | 1 \ 2 \ 4]
Original 163316968 | 163316968 | 163316968
Optimized 174213794 | 183802317 | 179825892
Improvement -6.6% -12.5% -10.1%

Figure 12: Varying Motion Distance

This problem lead to the development of a more active
movement strategy. Once we found a load that was a can-
didate for motion, we would seek out all instructions within
the block that the load depended upon. We would consider
all these instructions as candidates for motion together.

5.2 Performance of load motion

To evaluate the performance gain of load movement program
is a non-trivial task. It requires careful tuning and specially
targeted benchmark to observe desired performance.

When we conducted the evaluation, we found that a lot
of hardware optimization tricks should be taken into account
when judging if moving the load forward can actually achieve
the goal of overlapping load latency with computing instruc-
tions. We had to concern ourselves with such optimizations
such as hardware prefetch, out-of-order execution, and pre-
diction. The program itself needs to be carefully designed to
bypass those optimizations.

Also on the software side, when moving the load instruc-
tions too early, the compiler will require to split the loaded
register into memory, and we would have to manually force it
not to split.

We originally intended to use some real JAVA projects to
evaluate the performance. But normal JAVA programs or
most widely open-source JAVA projects rarely has the pat-
terns that would exhibit the benefits of moving load ahead (or
can not obviously exhibit), so we finally decided to write a
micro-benchmark on our own to better study the load move-

ment.

To evaluate the performance, we tried a couple tools:
Sniper simulator and Pin tools. We explored how different
hardware features affects the load scheduling performance.
We tuned different parameters and used the tools to look into
assembly codes and runtime traces. These experiments help
us gain a deeper understanding of how the compiled program
actually runs on the hardware and those hardware features
should be taken into account when doing load scheduling by
compiler.

5.3 Profiling real-world open-source programs is
hard

As Wenlu has experience analyzing large real-world commer-
cial C# projects in [7]], and experience working on Hadoop,
she did not expect profiling large real-world open-source Java
projects to be a lot harder.

We tried Apache Hadoop and HttpClient at first. After
spending several hours configuring it and running Hadoop,
we found out that it is not easy to re-compile the project.
It uses Apache Maven for compilation, which is known for
steep learning curve [4]. If we use Soot to instrument it, .java
are automatically converted to .class. This means we need to
change the Maven compilation process of Hadoop, and have
it taking .class files as input instead of .JAVA. This may take
a long time and is not even the focus of our work.

After learning this lesson, we came up with the Shell script
instrumenting approach. This approach covers fewer cases,
but is easy to implement and does not require understand-
ing of the compilation process. Although we still fail to pro-
file Hadoop as even unmodified code needs lots of tricks to
successfully compile, we are able to instrument and profile
six benchmarks from DaCapo Benchmark Suite - fop, luin-
dex, lusearch, pmd, sunflow, and xalan. Among the six, only
two, luindex and lusearch, actually produce logs. Others did
not produce logs due to the coverage shortcoming of this ap-
proach.

6 Conclusions and Future Work

We explored load motion with natural language hints, and
showed that it can improve performance by up to 9% when
load stalls are considerable in programming running time, i.e.
when memory footprint is large and/or cache size is small.
We have also shown that under other conditions, the optimiza-
tion may hurt performance but only by a little bit. Neither
moving a load too close nor too far are desirable. The sweet
spot may depend on hardware parameters like memory access
cost.

There are two aspects in where we expect that we can im-
prove our system. First of all, we believe we can improve the
machine learning. As of now the partially-implemented ad-
vanced version of load motion can not run because the classi-
fier only gives discrete result on which branch is more likely
to be taken. If more data can be collected, an advanced ma-
chine learning model can be used to predict the continuous
probability of taking each branch. We may be able to run and
test the advanced load motion algorithm. The system will be
then more knowledgeable of the cost of moving load instruc-
tions and thus make better decisions.

Second of all, we believe work can be done in improving
our system’s awareness of the hardware. The sweet spot of
how far a load instruction should be moved tends to be hard-
ware dependent. The benefit depends on how long each type
of instruction takes. If we can add the hardware parameters to
the input of the algorithm, the algorithm may be able to make
smarter decisions.

References

[1]

(2]

[3]

[4]

[6]

[10]

Apache ant. http://ant.apache.org/. [Online; accessed
28-April-2015].

Apache maven. https://maven.apache.org/. [Online; ac-
cessed 28-April-2015].

Java coding samples.

[11]

[12]

[13]

https://www.cs.utexas.edu/ scottm/cs307/codingSamples.htm.

[Online; accessed 28-April-2015].

Stackoverflow: Why do so few people
use maven? are there alternative tools?
http://stackoverflow.com/questions/1077477/why-do-
so-few-people-use-maven-are-there-alternative-tools.
[Online; accessed 28-April-2015].

Stephen M. Blackburn, Robin Garner, Chris Hoff-
mann, Asjad M. Khang, Kathryn S. McKinley, Rotem
Bentzur, Amer Diwan, Daniel Feinberg, Daniel Framp-
ton, Samuel Z. Guyer, Martin Hirzel, Antony Hosk-
ing, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish
Phansalkar, Darko Stefanovi¢, Thomas VanDrunen,
Daniel von Dincklage, and Ben Wiedermann. The
dacapo benchmarks: Java benchmarking development
and analysis. In Proceedings of the 21st Annual ACM
SIGPLAN Conference on Object-oriented Programming
Systems, Languages, and Applications, OOPSLA ’06,
pages 169—-190, New York, NY, USA, 2006. ACM.

Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout.
Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation. In Proceed-
ings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
SC ’11, pages 52:1-52:12, New York, NY, USA, 2011.
ACM.

Qiang Fu, Jieming Zhu, Wenlu Hu, Jian-Guang Lou,
Rui Ding, Qingwei Lin, Dongmei Zhang, and Tao Xie.
Where do developers log? an empirical study on log-
ging practices in industry. In Companion Proceedings
of the 36th International Conference on Software En-
gineering, ICSE Companion 2014, pages 24-33, New
York, NY, USA, 2014. ACM.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten. The
weka data mining software: An update. SIGKDD Ex-
plor. Newsl., 11(1):10-18, November 2009.

LLVM. Llvm — Wikipedia, the free encyclopedia.
http://en.wikipedia.org/wiki/LLVM, 2010. [Online; ac-
cessed 28-April-2015].

J Ross Quinlan. C4. 5: programs for machine learning.
Elsevier, 2014.

Srikanth T. Srinivasan and Alvin R. Lebeck. Load la-
tency tolerance in dynamically scheduled processors.
In Proceedings of the 31st Annual ACM/IEEE Inter-
national Symposium on Microarchitecture, MICRO 31,
pages 148-159, Los Alamitos, CA, USA, 1998. IEEE
Computer Society Press.

Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie
Hendren, Patrick Lam, and Vijay Sundaresan. Soot - a
java bytecode optimization framework. In Proceedings
of the 1999 Conference of the Centre for Advanced Stud-
ies on Collaborative Research, CASCON ’99, pages
13—. IBM Press, 1999.

Sebastian Winkel, Rakesh Krishnaiyer, and Robyn
Sampson. Latency-tolerant software pipelining in a pro-
duction compiler. In Proceedings of the 6th Annual
IEEE/ACM International Symposium on Code Gener-
ation and Optimization, CGO 08, pages 104—113, New
York, NY, USA, 2008. ACM.

	Introduction
	Our Approach
	Our Contributions
	Related Work

	Our Design
	Trace Collection
	Training
	Speculative Load Motion
	Advanced Branch prediction

	Experimental Setup
	Micro-benchmark

	Experimental Evaluation
	Cache size
	Cache/Memory access latency
	Window size
	Computation overlap
	Number of loop iterations
	Memory footprint
	Distances the instructions are moved

	Surprises and Lessons Learned
	Address-calculation Instructions
	Performance of load motion
	Profiling real-world open-source programs is hard

	Conclusions and Future Work

