
Codifying Visual Representations

Wode Ni*1[0000−0002−5341−4958], Sam Estep*1[0000−0002−7107−7043], Hwei-Shin
Harriman*1[0000−0002−3746−4808], Jǐŕı Minarč́ık2[0000−0002−4687−9108], and

Joshua Sunshine1[0000−0002−9672−5297]

1 Carnegie Mellon University, Pittsburgh, PA, USA
2 Independent Researcher

Abstract. Making visually appealing and meaningful diagrams involves
craftsmanship in designing the visual representation, drawing shapes,
and laying them out. Can the effort spent on diagrams by an expert be
reused by others, especially those without the expertise in design and
drawing? In this paper, we outline our prior work on Penrose, a dia-
gramming tool with first-class support for reusing visual representations.
The nature of our approach to reusability necessitates a domain-agnostic
method to automatically lay out a diagram. We highlight our existing
approach for general diagram layout and styling, and propose a new com-
posable approach for codifying visual representations to reuse expertise
that cuts across domains.

Keywords: Diagram Authoring Tools · Automatic Diagram Layout ·
Natural Diagramming Interface.

1 Defining visual representations

Authoring good diagrams requires both knowledge of the domain being illus-
trated and graphic design sense. An effective diagram author develops visual rep-
resentations by illustrating domain concepts with appropriate visual elements
and spatial layout. In prior work, we interviewed diagram authors and found
that defining visual representations is an important part of their diagramming
process and authors cared about reusing these representations to improve pro-
ductivity [2]. However, existing tools limited reuse to either duplicating prior
diagrams and manually tweaking them. Authors found these methods to be te-
dious and time-consuming.

This result suggests that diagramming tools should be representationally
salient : tools should allow authors to define visual representations for domain-
specific concepts in a manageable, scalable, and composable way. With repre-
sentation salience as an explicit goal, we build an open-source tool called Pen-
rose [4]. Authors make diagrams in Penrose using two languages: Substance
describes the conceptual content of a diagram while Style describes the visual

⋆ Authors contributed equally.

2 Ni et al.

Fig. 1. Selected Penrose-authored diagram examples. Each diagram is generated from
a different visual representation, codified as its own Style program.

representation. To date, Penrose has been used to define visual representa-
tions across a wide range of domains,3 including diagrams shown in fig. 1, and
Penrose generates diagrams for external tools [3,1].

2 Reusing visual representations

In Penrose, the Style language encodes visual representations by mapping
conceptual objects from Substance to primitive visual shapes and descriptions
of the visual layout. For instance, in fig. 2, the Style program describes how
to map sets and relationships in the domain to visual shapes (e.g., Circle) and
constraints, and this Style is reused to generate multiple Euler diagrams.

Set A, B, C

Disjoint(A, B)

Intersecting(A, C)

forall Set x {

 x.shape = Circle { }

 x.text = Equation { string: x.label }

 ensure contains(x.icon, x.text)

 encourage norm(x.text.center - x.icon.center) == 0

}

forall Set x, y where Subset(x, y) {

 ensure disjoint(y.text, x.icon, 10)

 ensure contains(y.icon, x.icon, 5)

}

forall Set x, y where Disjoint(x, y) {

 ensure disjoint(x.icon, y.icon)

}

forall Set x, y where Intersecting(x, y) {

 ensure overlapping(x.icon, y.icon)

 ensure disjoint(y.text, x.icon)

 ensure disjoint(x.text, y.icon)

}

Set A, B, C

Subset(B, A)

Subset(C, B)

Set A, B, C

Intersecting(A, B)

Intersecting(B, C)

Intersecting(C, A)

Fig. 2. Three Euler diagrams generated from different Substance programs (left)
using the same visual representation from a single Style program (right).

3 https://penrose.cs.cmu.edu/examples

https://penrose.cs.cmu.edu/examples

Codifying Visual Representations 3

We say that Style achieves representation salience because it encodes the
visual representation of Euler diagrams for all possible Substance programs.
Importantly, representation salience necessitates automatic layout. Alternatives
could include specifying layout in the Substance program or requiring manual
tweaks, both of which imply that important aspects of the visual representa-
tion were not sufficiently encoded in Style. That is, reusability is a necessary
consequence of representation salience.

While Style serves to abstract visual layout from the perspective of the Sub-
stance writer, it is itself built on top of a set of Penrose primitives for describ-
ing a visual representation as a numerical optimization problem. The ensure

keyword denotes a hard constraint which must be satisfied, while encourage

denotes a soft objective which the system should strive to achieve.
The disjoint, contains, and overlapping constraints used in fig. 2 are ex-

amples of visual layout primitives provided by Penrose. Many different Style
programs need to talk about shapes that must not overlap or must be nested,
for instance, so we’ve developed a mathematical framework to describe these for
arbitrary shapes. Using the signed distance function

ϕA(x) =

{
−d(x, ∂A) x ∈ A,

d(x, ∂A) x /∈ A.
where d(x, ∂A) = min

y∈∂A
|x− y|

and the Minkowski difference A − B = {a − b : a ∈ A, b ∈ B}, we can perform
layout by composing together these two operations in various ways:

disjoint(A, B) ⇐⇒ minimize max(0,−ϕA−B(0))

contains(A, B) ⇐⇒ minimize max(0,−ϕA∁−B(0))

overlapping(A, B) ⇐⇒ minimize max(0, ϕA−B(0))

We find these Minkowski penalties particularly useful for label placement, which
is often a very tedious subtask of diagramming. To support Style construc-
tion, Penrose provides a library of over 200 built-in functions and over 50
pre-defined layout constraints and objectives. These functions and primitives
are useful across many domains, and are thus reused in many Style files.

3 Composing visual representations

We have observed that visual representations in different domains often share
common visual components and layout patterns. For instance, multiple examples
in fig. 1 include circles with nearby text labels. Further, common visual tech-
niques are widely used in diagramming to convey domain-independent concepts,
such as using varying opacity or line weight to highlight parts of a diagram,
maintaining layout consistency across multiple diagrams to form a visual narra-
tive, or using sliders or other widgets to drive real-time physical simulations in
interactive webpages. It seems natural to separate out these common patterns
into their own components, suggesting that Penrose’s existing reusability of vi-
sual representations in Style does not provide sufficient flexibility for the needs
of digital diagrammers.

4 Ni et al.

In the current version of Penrose, authors can reuse geometric and layout
primitives (section 2) to create new Style programs, and users consume these
programs by writing different Substance programs with them. Each Style
program is standalone and self-contained, meaning that everything from the
styling of points to the color palettes must be defined within that program. In
practice, this means that common visual design patterns are copied and pasted
between Style files. Additionally, it is common for individual diagrams within a
domain to have customized visual elements to draw focus or illustrate a concept.
Currently, the only way to override the domain-wide visual style in Penrose is
by using workarounds that involve more copying/pasting code in Style. These
two limitations result in repetitive and lengthy programs that require high effort
to edit and maintain, even for expert Penrose users.

While code duplication and multiple versions of Style may be manageable
on a small scale (e.g., fig. 1), we plan to build a broader ecosystem of diagrams
and this requires more flexible reuse mechanisms. We propose composability as
the main design goal for improving Penrose. The existing layout primitives are
an example of composability: authors can reuse and combine multiple primitives
to form new layout problems. Looking forward, we plan to allow diagrammers to
create modules of visual components and layout patterns. Through this mecha-
nism, an author can draw together multiple different modules they need for their
own diagram. And these modules can themselves be composed from other mod-
ules: for instance, a module for visualizing complex analysis might make use of
lower-level modules for visualizing a coordinate plane and plotting curves, but
build on top of that with domain-specific visuals for singularities in holomor-
phic functions. In addition to user-defined modules, there are also opportunities
to build domain-independent visual techniques, such as individual object-level
highlighting or annotations, into our languages or as standard library modules.

We believe this composable approach will open up new possibilities for dia-
grammers to collaborate and create more flexible, reusable, and expressive visual
representations. Going forward, we plan to leverage research on common building
blocks of and layout patterns in specific domains of diagramming, to construct
a substrate for composable visual representations.

References

1. Clark, C., Bohrer, R.: Homotopy type theory for sewn quilts. In: Proc. of the 11th
ACM SIGPLAN Int. Workshop on Functional Art, Music, Modelling, and Design.
FARM’23 (2023)

2. Ma’ayan, D., Ni, W., Ye, K., Kulkarni, C., Sunshine, J.: How domain experts create
conceptual diagrams and implications for tool design. In: Proc. of the 2020 CHI
Conf. on Human Factors in Computing Systems. CHI’20 (2020)

3. Nawrocki, W., Ayers, E.W., Ebner, G.: An extensible user interface for lean 4. In:
Proc. of the 14th Int. Conf. on Interactive Theorem Proving. ITP’23 (2023)

4. Ye, K., Ni, W., Krieger, M., Ma’ayan, D., Wise, J., Aldrich, J., Sunshine, J.,
Crane, K.: Penrose: From mathematical notation to beautiful diagrams. ACM Trans.
Graph. (2020)

	Codifying Visual Representations

