
Minkowski Penalties: Robust Differentiable Constraint Enforcement for
Vector Graphics

JIŘI MINARČÍK, Independent Researcher, Czech Republic
SAM ESTEP, WODE NI, and KEENAN CRANE, Carnegie Mellon University, USA

Fig. 1. Minkowski penalties provide robust enforcement of general geometric predicates, for a wide variety of shapes. Here we highlight, from left to right:
(S) glyph placement with precise padding, (I) nested containment, (GG) successful optimization from a highly infeasible state, (R) high-quality packing
and boundary alignment, (A) joint constraint enforcement and energy optimization, (P) constraint enforcement for shapes that do not have a well-defined
inside/outside, and (H) no-overlap constraints integrated with graph layout. In each case (except (I)), shapes are confined to a nonconvex region.

This paper describes an optimization-based framework for finding arrange-
ments of 2D shapes subject to pairwise constraints. Such arrangements
naturally arise in tasks such as vector illustration and diagram generation,
but enforcing these criteria robustly is surprisingly challenging.We approach
this problem through the minimization of novel energetic penalties, derived
from the signed distance function of the Minkowski difference between
interacting shapes. This formulation provides useful gradients even when
initialized from a wildly infeasible state, and, unlike many common collision
penalties, can handle open curves that do not have a well-defined inside
and outside. Moreover, it supports rich features beyond the basic no-overlap
condition, such as tangency, containment, and precise padding, which are
especially valuable in the vector illustration context. We develop closed-form
expressions and efficient approximations of our penalty for standard vector
graphics primitives, yielding efficient evaluation and easy implementation
within existing automatic differentiation pipelines. The method has already
been “battle-tested” as a component of public-facing open source software;
we demonstrate the utility of the framework via examples from illustration,
data visualization, diagram generation, and geometry processing.

CCS Concepts: • Human-centered computing → Visualization; • The-
ory of computation→ Mathematical optimization.

Additional Key Words and Phrases: geometric constraints, mathematical
diagrams, Minkowski difference, signed distance function

ACM Reference Format:
Jiři Minarčík, Sam Estep, Wode Ni, and Keenan Crane. 2024. Minkowski
Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics.

Authors’ Contact Information: Jiři Minarčík, Independent Researcher, Czech Republic;
Sam Estep; Wode Ni; Keenan Crane, Carnegie Mellon University, Pittsburgh, PA, USA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0525-0/24/07
https://doi.org/10.1145/3641519.3657495

In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Conference Papers ’24 (SIGGRAPH Conference Papers ’24), July
27-August 1, 2024, Denver, CO, USA. ACM, New York, NY, USA, 14 pages.
https://doi.org/10.1145/3641519.3657495

1 INTRODUCTION
Layout of 2D shapes is a central task in graphic design, data visualiza-
tion, diagramming, and document generation. In many situations,
it can be framed as a geometric constraint satisfaction problem:
find shape parameters that satisfy a given set of layout constraints.
While layout strategies are intensely studied for special classes of
problems such as graph drawing [Tamassia 2013] or document lay-
out [Hurst et al. 2009], layout of general 2D illustrations is not as
well-developed. We approach this problem from the perspective of
continuous, descent-based optimization. While other strategies (e.g.,
random sampling or SAT solvers) are of course quite valuable, a
penalty method is easily integrated with existing continuous formu-
lations, and widely-used automatic differentiation/backpropagation
frameworks.
As a motivating problem, consider the simple

task of arranging two axis-aligned rectangles 𝐴
and 𝐵 such that they do not overlap. More pre-
cisely, suppose we seek a penalty function P de-
pending on the parameters of 𝐴 and 𝐵 (center,
width, and height) such that following the gra-
dient of P leads to a feasible state. This innocent-
sounding problem is deceptively hard to solve. For
instance, simply minimizing overlap area is insuf-
ficient, since the gradient of this area is zero in many overlapping
configurations (inset, top). Likewise, penalizing mutual containment
of corners can fail (inset, bottom); more generally, any strategy based
on sampling a finite number of points can hence miss overlaps. (Sec-
tion 5.1 considers this situation in more detail.)

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

2 • Minarčík, Estep, Ni, and Crane

Fig. 2. User-specified illustrations and diagrams can be unpredictable, mak-
ing it hard to find a feasible initial state. Our method places no such burden
on the user, permitting completely random initialization (top left). Here
for instance we optimize triangles so that they maximize area and are as
equilateral as possible, while requiring them to be mutually disjoint (with a
small amount of padding) and contained within the nonconvex letter “R”.

Layout of course becomes much harder once we look beyond this
toy problem, toward larger classes of shapes and constraints. The
challenge is not finding a better optimization scheme, but first and
foremost designing penalty functions with the desired behavior. In
particular, we seek penalties that meet the following requirements:

(Min) Global minima correspond to feasible configurations.
(Diff) Differentiable with respect to shape parameters.
(Grad) Nonzero gradient if and only if constraints are violated.1
(Shape) Applies to general shapes (nonconvex, open . . .).
(Param) Permits arbitrary, user-defined parameterization of

shapes (e.g., polylines encoded as edge lengths and
turning angles), rather than just rigid translation.

As explored in Section 5.1, however, it is surprisingly challenging to
design penalties that simultaneously satisfy all of these properties.

Our solution builds on the penetration depth long used in robotics,
adapting this perspective to vector graphics layout. In particular,
we express pairwise constraints on shapes 𝐴 and 𝐵 in terms of the
signed distance function (SDF) 𝜙𝐶 of their Minkowski difference
𝐶 := 𝐴 − 𝐵 (Section 3), which is well-defined for arbitrary open
and closed curves (Shape). The resulting Minkowski penalties are
nonnegative, become zero only when constraints are satisfied (Min),
and exhibit nonzero gradients whenever constraints are violated
(Grad). We couple these penalties with a carefully-chosen exterior
point method that permits infeasible states. These components are
well-matched: the exterior point method avoids the need for feasi-
ble initialization, and Minkowski penalties provide useful gradient
information even in infeasible states. As a result, we can obtain
valid solutions even from a wildly infeasible initialization (Figure 2).

1Isolated maxima/saddles are acceptable, since numerical perturbations or intensional
derivatives [Lee et al. 2020, Section 3] lead descent methods away from such points.

Moreover, sinceMinkowski penalties are easily integrated withmod-
ern autodiff (Diff), they can be used in conjunction with arbitrary
shape parameterizations (Param).

1.1 Layout Problem
Consider a collection of shapes S = {𝑆1, . . . , 𝑆𝑛}, parameterized by
degrees of freedom p = (𝑝1, . . . , 𝑝𝑚) ∈ R𝑚 (e.g., centers and radii
for circles, or vertices for polylines). We seek a configuration of S
that satisfies a collection of geometric predicates (containment, non-
overlap, etc.), encoded by nonnegative penalty functions P1, . . . ,P𝑙 :
R𝑚 → R≥0 which equal zero if and only if the corresponding
predicate is satisfied. We may also wish to optimize other objectives
(e.g., smoothness of a curve), encoded by energy terms E1, . . . , E𝑘 .
Overall, then, we have an optimization problem

min
p∈R𝑚

𝑘∑︁
𝑖=1

E𝑖 (p) s.t.
𝑙∑︁

𝑖=1
P𝑖 (p) = 0. (1)

In particular, we use the penalties defined in Section 3; Section 5.3
gives energy definitions in the context of various layout examples.

2 BACKGROUND
Notation. We use |x| and ⟨x, y⟩ to denote the Euclidean norm and

inner product of vectors x, y ∈ R𝑛 (which are typeset in bold); 0
denotes the origin in R𝑛 . We also use 𝜕𝐴 and 𝐴𝑐 for the boundary
and complement of an 𝑛-dimensional region 𝐴 ⊂ R𝑛 , resp.

2.1 Minkowski Difference
The Minkowski sum 𝐴 + 𝐵 of any two sets 𝐴, 𝐵 ⊂ R𝑛 is the set

𝐴 + 𝐵 := {a + b : a ∈ 𝐴, b ∈ 𝐵}.

Intuitively, it describes the set obtained by “sweeping” a copy of 𝐴
over every point of 𝐵 and vice-versa (see Figure 3, left). For brevity,
we will use 𝐴 + x to denote the Minkowski sum with the set {x}.
The Minkowski difference 𝐴 − 𝐵 is2 the sum of 𝐴 with the negated
set −𝐵 := {−b : b ∈ 𝐵}. Importantly, 𝐴 and 𝐵 intersect if and only if
0 ∈ 𝐴 − 𝐵, i.e., if there is at least one pair of points such that a = b.

2.2 Signed Distance Functions
For any 𝑛-dimensional region 𝐴 ⊂ R𝑛 , let

𝑑 (x, 𝜕𝐴) := min
y∈𝜕𝐴

|x − y|

denote the (unsigned) distance from any point x to the closest point
on 𝐴’s boundary. The signed distance function (SDF) for 𝐴 is then

𝜙𝐴 (x) :=
{
−𝑑 (x, 𝜕𝐴) x ∈ 𝐴,

𝑑 (x, 𝜕𝐴) x ∉ 𝐴.

The zero level set of 𝜙𝐴 gives the boundary of 𝐴, i.e., 𝜕𝐴 = 𝜙−1
𝐴

(0)
(where −1 denotes the preimage). In our method all SDFs are ex-
pressed in closed form rather than via, e.g., grids [Osher et al. 2004]
or neural networks [Yariv et al. 2021, 2023; Marschner et al. 2023].

2Some authors instead use “Minkowski difference” to mean the set𝐴⊖𝐵 = (𝐴𝑐 −𝐵)𝑐 .

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics • 3

signed distance function (SDF)

Fig. 3. Construction of theMinkowski difference𝐶 = 𝐴−𝐵 between general
shapes 𝐴 and 𝐵; and visualization of its signed distance function 𝜙𝐶 .

3 PENALTIES
Our basic approach is to translate the logic of geometric predicates
(e.g., “𝐴 must not contain 𝐵”) into differentiable penalty functions.
In principle one could consider, e.g., a complete Boolean logic—we
here focus on predicates commonly found in 2D illustration.

As a starting point, let𝐶 := 𝐴 − 𝐵 be the Minkowski difference of
any two sets 𝐴, 𝐵 ⊂ R𝑛 . As noted in Section 2.1, these sets intersect
if and only if 0 ∈ 𝐶—or equivalently, if 𝜙𝐶 (0) < 0. The quantity
𝜙𝐶 (0) is known in robotics as the penetration depth, and gives the
minimum distance one would have to move 𝐴 or 𝐵 to resolve or
induce overlap (depending on sign).
To generalize beyond overlap, we compose penetration depth

with several basic functions. In particular, each predicate below is
satisfied if and only if the associated nonnegative penalty evaluates
to zero. Moreover, the penalty gradient is zero when the constraint
is satisfied—and points toward a feasible state when it is not.

Predicate Penalty
do not overlap (𝐴 ∩ 𝐵 = ∅) P𝑑 (𝐴, 𝐵) = −min(0, 𝜙𝐶 (0))

overlap (𝐴 ∩ 𝐵 ≠ ∅) P𝑜 (𝐴, 𝐵) = max(0, 𝜙𝐶 (0))
tangent (𝐴 ∩ 𝐵 ⊂ 𝜕𝐴 ∩ 𝜕𝐵 ≠ ∅) P𝑡 (𝐴, 𝐵) = |𝜙𝐶 (0) |

contains (𝐴 ⊂ 𝐵) P𝑐 (𝐴, 𝐵) = P𝑑 (𝐴, 𝐵𝑐)
(Section 3.3.1 details how to evaluate set complement for polygons.)
By further composing penalties with basic functions and geometric
operations, one could build even more expressive constraints. For
example, ensuring mutual overlap of three sets𝐴∩𝐵∩𝐶 ≠ ∅might
be enforced by evaluating P𝑜 (𝐴 ∩ 𝐵,𝐶) on an explicit intersection
of 𝐴 and 𝐵—though we do not implement such a penalty here.

Open Curves. An open curve 𝛾 (like
a line segment or hemicircle) does not
have a well-defined “inside” and “out-
side.” Hence, one cannot directly formu-
late penalties in terms of the SDF of 𝛾
itself (à la [Chen et al. 2023]). However,
the Minkowski difference of 𝛾 with an-
other set 𝐴 (including another open curve) still has a well-defined
inside/outside, apart from highly degenerate arrangements such as
two parallel, collinear segments. Our Minkowski penalty formula-
tion therefore applies without modification to open curves, as seen
in Figure 1 (P), Figure 8 left, and Figure 15.

or
ig

in
al

po
ly

go
na

l

100pt20pt4pt2pt1pt

di
ff
er
en
ce

padding: (none)

Fig. 4. When laying out vector graphics, like text labels, one often seeks
padding around shapes—corresponding to a Minkowski sum with a disk.
Even for small padding, little is hence gained by using the exact glyph
geometry to enforce constraints (approaching identical regions in the limit).

Padding. Many layout tasks demand pre-
cise padding between shapes, i.e., a gap of
constant, user-specified thickness𝑤 ∈ R>0.
A common case is accounting for stroke
width, which effectively pads the original
shape. A benefit of our SDF-based formu-
lation is that we achieve exact padding by
simply adding or subtracting𝑤 from the penetration depth 𝜙𝐶 (0)
(Figure 14, right). Otherwise, penalties are unchanged. Such offsets
also provide exact constraint enforcement for rounded rectangles
(inset), or more general paths with a round join style.

3.1 Evaluating Signed Distance
To use our penalties, we must be able to evaluate the penetration
depth 𝜙𝐶 (0) of a Minkowski difference 𝐶 , as well as the gradient
∇p𝜙𝐶 (0) with respect to the degrees of freedom p (from Equation 1).
We here describe how to evaluate the SDF of Minkowski differences;
Section 4.1 discusses gradient evaluation.
For many basic shapes 𝐴, 𝐵 (e.g., a circle and a rectangle), the

Minkowski difference 𝐶 = 𝐴 − 𝐵 is itself a basic shape whose SDF
is easily evaluated in closed form (see supplement, Appendix A).
For more general shapes, we apply polygonal approximation (Sec-
tion 3.2). An exact evaluation scheme for general Bézier curves
would be overkill in our context: for one, early stages of optimiza-
tion require only a descent direction, and not the exact gradient.
Also, when padding is used, the difference between exact and ap-
proximate shapes quickly becomes negligible (Figure 4). Moreover,
unlike differentiable rasterization, which needs only the distance
to a single Bézier curve [Li et al. 2020], we need the distance to the
Minkowski difference—which is far more complex [Lee et al. 1998].

3.2 Polygonal Approximation
Prior to computing Minkowski differences, we ap-
proximate all Bézier curves by polygons. For our ex-
amples we simply use the endpoints of each Bézier
segment plus four uniformly-spaced interior points, though one
could use a more careful approximation—Li et al. [2023, Section 1]
catalog several options. In particular, to strictly enforce non-overlap

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

4 • Minarčík, Estep, Ni, and Crane

or containment constraints, one would need a polygon that conser-
vatively inscribes/is circumscribed by the curve (resp.), à la Sacht
et al. [2015]. For dynamic Bézier curves one could also express each
polygon vertex as a linear combination of control points, though
we did not implement such a scheme.

3.3 Minkowski Difference of Polygons
Given polygonal approximations of 𝐴, 𝐵, we explicitly construct
their Minkowski difference𝐶 = 𝐵−𝐴, which will again be a polygon.
Penetration depth 𝜙𝐶 (0) is then evaluated via standard formulas for
the SDF of a polygon, in linear time (see supplement, Appendix A.4).

When 𝐴 and 𝐵 are convex, their Minkowski difference is just the
convex hull of the difference of their vertex sets—which can again be
computed in linear time [Semenov 2020]. More generally, for simple
nonconvex polygons there are two basic methods: decomposition
and convolution [Wein et al. 2023]. Decomposition partitions 𝐴 and
𝐵 into convex regions, takes all pairwise Minkowski sums of these
regions, and merges the sums [Margalit and Knott 1989]. However,
both partitioning and polygon union can be hard to implement
efficiently and robustly [Behar and Lien 2011, Section II].
We instead opt for convolution, which is

efficient in practice, and comes with a well-
established theory [Baram 2013]. More impor-
tantly, it enables us to differentiate through
Minkowski sums (hence our penalties), as detailed
in Section 4.1. Basic convolution sums all edges
of 𝐴 with all vertices of 𝐵, and vice-versa, yield-
ing a superset of 𝜕𝐶 . It then splits segments at
intersections, traces out loops, and removes “false
loops” to obtain the final sum [Guibas and Seidel 1986]. Reduced con-
volution [Behar and Lien 2011] omits reflex vertices, significantly
reducing the initial number of segments (see inset).

Acceleration. If the vertices of 𝑃 and 𝑄 can move freely, their
Minkowski sum must be recomputed at every optimization step.
However, in the fairly common case where 𝑃 and𝑄 experience only
rigid translations by offsets p, q ∈ R2, their sum can be computed
just once and cached. This simplification follows from the identities

(𝑃 + p) + (𝑄 + q) = (𝑃 +𝑄) + (p + q) and 𝜙𝐶+c (0) = 𝜙𝐶 (−c).
Also note that in some situations (e.g., to prevent overlap of glyphs
with small holes, like the letter ‘B’) it is sufficient just to compute
the outermost boundary of the Minkowski sum and ignore removal
of “false loops”—thereby skipping the slowest step of the reduced
convolution algorithm.

3.3.1 More General Polygons. The strategies outlined above im-
mediately apply to degenerate polygons—e.g., a line segment can
be treated as a polygon with two identical but oppositely-oriented
edges. One can also compute a Minkowski sum involving a set
complement 𝐴𝑐 by just reversing the orientation of 𝐴 (i.e., by re-
versing the order of the vertices). Finally, nonsimple polygons can
be partitioned into triangles [Hertel and Mehlhorn 1983] or simple
polygons [Subramaniam 2003]; like the decomposition approach,
one can then take the union over all pairwise sums of elements from
the decomposition to obtain the Minkowski sum of the two original
polygons.

4 OPTIMIZATION
We next describe a general approach for solving the vector graphics
layout problem from Equation 1, using automatic differentiation
(Section 4.1) and an exterior point method (Section 4.2).

4.1 Automatic Differentiation
We use reverse-mode autodiff [Speelpenning 1980] to differentiate
penalties from Section 3. Tools from machine learning, like Py-
Torch [Paszke et al. 2019], focus on relatively simple tensor-based
computation and are ill-suited to our scalar- and algorithm-heavy
penalty functions. Here, more conventional engines such as Zy-
gote [Innes et al. 2019] and Enzyme [Moses and Churavy 2020] are
more suitable. In particular, since we target web-based applications
(Section 5.3.5), we use Rose [Estep et al. 2024], which runs natively in
the browser (and was two orders of magnitude faster than Zygote).
To handle Minkowski sums, we could naïvely differentiate the

whole convolution algorithm, but at a significant price: the adjoint
pass must work through a huge number of edge calculations that are
ultimately thrown out. Moreover, even though the number of arith-
metic operations used by autodiff differs from function evaluation
by only a constant factor, reverse-mode autodiff still asymptotically
increases the number of memory operations [Jakob et al. 2022, Sec-
tion 2.2]—which are orders of magnitude slower than arithmetic.
We hence take a different route and track how each vertex of the
sum 𝐶 depends on vertices of 𝐴 and 𝐵. In particular, each such
vertex is either (i) a simple sum or (ii) the result of an edge-edge
intersection—dramatically reducing dependency depth relative to
the naïve strategy. These relationships are then provided to the
autodiff engine as custom derivative expressions.

4.2 Exterior Point Method
Following a strategy suggested by Ye et al. [2020], we adopt an
exterior point method to solve Equation 1. This method permits
infeasable initialization, via progressive stiffening of constraints.
Recall that our penalties P𝑖 are carefully designed to equal zero
when constraints are satisfied, and to be positive (hence active) only
when constraints are violated. We can therefore convert Equation 1
into a sequence of unconstrained optimization problems

min
p∈R𝑚

𝑘∑︁
𝑖=1

E(p) + 𝑐𝑛
𝑙∑︁

𝑖=1
P2
𝑖 (p), 𝑛 = 0, 1, 2, · · · (2)

where positive parameters 𝑐0, 𝑐1, 𝑐2, . . .
progressively increase the strength of
the penalties. As in barrier methods, pro-
gressively increasing 𝑐 keeps successive
minimizers close to each other—avoiding
steep gradients that cause trouble for con-
vergence. In particular, we follow the
schedule suggested by Jensen and Bard
[2002, Appendix A], letting 𝑐𝑛+1 = 𝜂𝑐𝑛
for 𝜂 = 10, starting at 𝑐0 = 10−3, and stopping when the change
in the objective or in |p| is less than 𝜀 = 10−3. Each unconstrained
problem is solved using L-BFGS [Liu and Nocedal 1989], using a line
search strategy from Lewis and Overton [2009] which is guaranteed
to converge to local minima even for nondifferentiable objectives.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics • 5

4.3 Guarantees and Failure Modes
Convergence of our overall method to a feasible point is formally
guaranteed only if one can find global minimizers for each uncon-
strained problem [Luenberger et al. 1984, p. 400]. However, it is easy
to get some intuition for why Minkowski penalties are so robust in
practice. Suppose, for instance, we want to enforce the no-overlap
predicate 𝐴 ∩ 𝐵 = ∅, via the penalty P𝑑 (𝐴, 𝐵). For simplicity, imag-
ine that 𝐴 is fixed, and 𝐵 can only translate by an offset p ∈ R2.
Then we have a 2D energy landscape, which in an infeasible state
just looks like the penetration depth 𝜙𝐶 (0) (up to sign). Since 𝜙𝐶
is an SDF, we get a nonzero gradient |∇p𝜙𝐶 | = 1 whenever 𝐴 and
𝐵 overlap.3 As a result, an infeasible state cannot be a fixed point
of gradient descent. Moreover, since the gradient norm is bounded
away from zero (namely, always equal to 1), we cannot have an in-
feasible limit point. We also cannot encounter cycles, since gradient
descent reduces a potential at every step (strictly enforced by line
search). Of course, this rough argument may not apply to more gen-
eral shape parameterizations—and in practice we can get stuck in
infeasible states due to a balance of forces from different constraints
(Figure 12). More rigorous analysis is an interesting question for
future work.

5 RESULTS AND EVALUATION
In this section we evaluate the effectiveness of our approach and
compare it to alternative methods. Note that although we show only
one or two images for each example, these results are not “cherry
picked”: as seen in Figure 15 of the supplement, we reliably obtain
high-quality results for different random initializations.

5.1 Rectangle Penalties
As discussed in Section 1, simple ad-hoc penalties often fail to work
as expected. As a case study, we consider several penalties specially
tailored to prevent overlap of axis-aligned rectangles:
• Intersection over union. The overlap area |𝐴 ∩ 𝐵 | normalized

by total area |𝐴 ∪ 𝐵 | = |𝐴| + |𝐵 | − |𝐴 ∩ 𝐵 |—known as intersection
over union [Rezatofighi et al. 2019]. Here the gradient can be zero
even when 𝐴 and 𝐵 overlap (e.g., they form a “cross”, or 𝐴 ⊂ 𝐵).

• Coordinate projection. The minimum of the horizontal and
vertical range of overlap, which is nonzero if 𝐴 ∩ 𝐵 ≠ ∅. Again,
the gradient can be zero in, e.g., nested or “cross” configurations.

• Repulsive corners. The sum of Coulomb potentials 1/|a𝑖 −
b𝑗 | over all pairs of rectangle corners a𝑖 , b𝑗 . Here, a balance of
Coulomb forces can still yield overlapping configurations.

• SDF at corners. The sum of min(0,−𝜙𝐴 (b𝑖)) over all corners of
𝐵 and likewise for 𝐴, which is zero if all corners of 𝐴 are outside
𝐵 and vice versa. Here, rectangles can again overlap in a “cross.”

• Pyramid overlap. Consider a pyramid over each rectangle, with
height inversely proportional to area. Since tall, narrow pyra-
mids “pierce through” large, flat ones, their overlap volume has a
nonzero gradient for intersecting configurations [Jacobson 2021].
However, this volume is hard to differentiate (we use finite differ-
ences of mesh booleans), and does not apply to general shapes.

3In fact, the gradient is numerically well-defined even at nondifferentiable points, since
autodiff computes intensional derivatives, as defined by Lee et al. [2020, Section 3].

intersection over union coordinate projection pyramid overlap

repulsive cornersMinkowski penalty SDF at corners

Approach (Min) (Diff) (Grad) (Shape) (Param)

Intersection over union ✓ ✓ · · ✓
Coordinate projection ✓ ✓ · · ·
Repulsive corners ✓ ✓ · ✓ ✓
SDF at corners · ✓ · · ✓
Pyramid overlap ✓ · ✓ · ✓
Minkowski penalty ✓ ✓ ✓ ✓ ✓

Table 1. Comparison of penalties aimed at preventing rectangle overlap—
which either cannot guarantee non-overlap, or do not generalize to shapes
beyond rectangles. Minkowski penalties satisfy all the target properties.

Table 1 displays a qualitative comparison of these approaches, and
Figure 16 illustrates the various failure modes on a box packing
problem. In general, it becomes clear that a robust penalty must
consider all points of a shape (not just, e.g., vertices), and must also
decrease in magnitude as a configuration approaches feasibility (in
order to supply useful gradients).

5.2 Comparison to Direct Distance Evaluation

Fig. 5. Computing explicit Minkowski
differences (exact approach) provides
significant acceleration relative to di-
rect SDF evaluation (halfplane trick).

One possible concern is that
constructing explicitMinkowski
sums is impractical relative to
simpler alternatives. To gauge
this cost, we compared to a sim-
ple baseline where we use a
“halfplane trick” to approximate
𝜙𝐶 without constructing an ex-
plicit polygon for𝐶 (see supple-
ment, Appendix B for details).

Figure 5 compares these two
approaches, measuring wall-clock time (in JavaScriptCore) for
optimizing pairwise disjoint constraints on 100 regular polygons of
varying degree. Apart from fairly small polygons, we find that the
overhead of computing an explicit Minkowski sum is well worth
the effort. Moreover, it is unclear how to directly evaluate the
Minkowski SDF for more general (e.g., nonconvex) shape pairs.

5.3 Examples
Since our scheme is based on continuous optimization (versus, e.g.,
combinatorial [Wagner et al. 2001] or spectral [Cui et al. 2023] meth-
ods), it can easily be integrated with energetic objectives that arise
in a wide variety of illustration and diagramming tasks. We here
consider several examples demonstrating that Minkowski penalties
“play well” with common energies. Pure feasibility problems (i.e.,

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

6 • Minarčík, Estep, Ni, and Crane

Fig. 6. To help illustrate a eukaryotic cell undergoing necrosis, we pack a user-specified collection of highly nonconvex organelle shapes into a varying outer
membrane shape (left to right). Individual shapes are “remixed” from existing vector art (shown in Figure 18).

Fig. 7. For nonconvex shapes (left), we get a much tighter packing than with
a convex hull approximation (center bottom). We also support constraints
beyond no-overlap—here, tangency constraints ensure that each monkey
in the barrel links arms with its neighbor (right). We treat each monkey as
three polygons (center top) to avoid, e.g., tangency between heads and feet.

no energy) are shown in Figure 7 and Figure 13, demonstrating
the exemplary ability of our method to handle tight packing and
tangency constraints, even for highly nonconvex geometry.

The median compute time for all examples was about 3 seconds;
more elaborate packings (like Figure 1 (H)) took about a minute. Ta-
ble 2 in the supplement gives per-figure timings. Long optimization
times were invariably due to packing together many small elements,
since we naïvely evaluate all 𝑂 (𝑛2) pairs of constraints/gradients.
However, since our penalties are compactly supported, this cost
could be reduced to 𝑂 (1) by adopting, e.g., an active set approach
with a spatial hash (à la Teschner et al. [2003]).

5.3.1 Elastic Curves. Euler elastica, which minimize total squared
curvature subject to, e.g., length or endpoint constraints, provide
visually pleasing arrows, connector lines, and other curved diagram
elements [Levien 2009]. For optimization, we parameterize curves as
polylines and minimize a discrete elastic energy (see Appendix C.1
of the supplement). Solutions are then visualized as Catmull-Rom
splines [Catmull and Rom 1974]. Figure 8 and Figure 15 show exam-
ples where we simultaneously optimize the shape of elastic curves
(each with 70 control points) and the arrangement of solid disks,
while keeping all shapes non-intersecting and contained within a
bounding region via penalties P𝑑 and P𝑐 (resp.). Notice that we

find smooth curves and feasible arrangements, even in the pres-
ence of open, self-intersecting curves (which have no well-defined
inside/outside), and nonconvex domains.

5.3.2 Spectral Graph Drawing. Graph drawing is a central compo-
nent of data visualization, with a rich algorithmic history [Tamassia
2013]. One popular approach is force directed layout, which puts
emphasis on edge length, but does not directly account for node
shape—some methods, e.g., apply node constraints heuristically af-
ter layout, or in discrete steps [Bastian et al. 2009]. In Figure 8 we
augment spectral graph layout with Minkowski penalties P𝑑 to
explicitly avoid node-node overlap during optimization (see Appen-
dix C.2 of the supplement for details). In turn, node shape and size
can be used to clearly convey additional information not possible
with traditional graph drawing algorithms.

5.3.3 Dimensionality Reduction. Similarly, we can look for a low-
dimensional embedding of high-dimensional data points, while
also ensuring that the shapes used to draw the points are non-
overlapping. In Figure 8 for instance we embed fonts in the plane
according to their typographical attributes (cap height, stroke con-
trast, etc.), and using the font name itself to represent each point. To
do so, we take an approach inspired by t-SNE [van der Maaten and
Hinton 2008]: minimize the Kullback-Leibler divergence between
the similarity matrix of high-dimensional features and the current
2-dimensional embedding (see supplement, Appendix C.3 for de-
tails). We can also use Minkowski penalties to impose a prior on
the topology of the low-dimensional embedding, by constraining it
to a given region (Figure 8, right).

Fig. 8. Enforcing constraints via differentiable penalties enables our ap-
proach to be integrated with other energies commonly used for illustration
and data visualization. Here for instance we simultaneously optimize elastic
curve energy (left), enabled by our ability to handle open curves, perform
spectral graph layout with disjoint node representations (center) and show
t-SNE embedding of popular fonts displayed as non-overlapping text (right).

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics • 7

Fig. 9. Our method fails gracefully when constraints cannot be satisfied.
Here, for instance, we seek to place each glyph within the larger “S”, while
avoiding pairwise overlap between the glyphs. Although there are far too
many glyphs to achieve a feasible arrangement, the resulting layout still
evenly distributes overlap across the illustration.

5.3.4 Text Layout. Typographical glyphs are most typically repre-
sented via piecewise quadratic or cubic Bézier curves, making it
possible to use our framework for fine-grained placement of, e.g.,
text labels within larger illustrations or diagrams.
Figure 1 (S) provides a stress test of typographi-
cal layout, providing much tighter packing than
with a simple bounding box approximation (in-
set). In many practical situations, diagrams be-
come too crowded to avoid overlap altogether—
here our method fails gracefully, equally dis-
tributing overlap across the layout (Figure 9).

5.3.5 Mathematical Diagrams. Penrose [Ye et al. 2020] is an open
source, web-based package for mathematical diagrams [Ye et al.
2020]. For over two years, ourMinkowski penalty scheme has served
as the constraint enforcement strategy for shape predicates, and
“battle-tested” by a community of real users. Interactive examples can
be found on the Penrose gallery examples page,4 some of which are
depicted in Figure 10. Even with a client-side, browser-based Type-
Script implementation, our method is fast enough to give immediate
feedback, and robust enough to handle unanticipated layout prob-
lems generated by real users—or even randomly-generated [Harri-
man 2021] and LLM-generated problems [Jain et al. 2023].

5.3.6 Biological Illustration. An end-to-end example in Figure 6
demonstrates the ability of our method to handle large numbers
of complex, highly nonconvex shapes. Here we “remix” a collec-
tion of organelle and membrane shapes (resp.) from two existing
pieces of vector art (see supplement, Figure 18). Bézier curves are
approximated via polygons à la Section 3.2; Minkowski penalties
are then used to enforce containment within the cell and no-overlap
between organelles. The resulting dense packing of many organelles
better reflects the “crowded” nature of eukaryotic cells, which is
challenging to lay out by hand (or even algorithmically [Lok 2011]).

edges
only

5.3.7 Globally Injective Flattening. Though our main
focus is 2D vector illustration,Minkowski penalties are
also promising for broader problems in geometry pro-
cessing and simulation. For example, a fundamental
geometric task is to flatten a mesh to the plane with-
out self-overlap. Here we can use Minkowski penalties
P𝑑 to enforce no-overlap on all pairs of non-adjacent

4https://penrose.cs.cmu.edu/examples

triangles, while minimizing a standard distortion energy (see sup-
plement, Appendix C.5 for details). Figure 11 shows an experiment
inspired by the most challenging “crossing arms” example from Du
et al. [2021, Figure 15, right] (on which that method fails). Here we
reliably find globally-injective maps, starting with random, infea-
sible initialization, even in the presence of additional containment
constraints. We conjecture that this method succeeds because (i)
the weaker penalties used in the initial phase of exterior-point opti-
mization allow us to “tunnel through” infeasible states, and (ii) we
penalize full triangle-triangle overlap, rather than just, e.g., edge-
edge intersections along the boundary—which fail to yield injectivity
(see inset). Though our current implementation prevents us from
scaling to larger meshes (all 𝑂 (𝑛2) constraints are active), future
extensions suggest rich new opportunities for geometry processing
and beyond (Section 7).

6 RELATED WORK
The literature on shape optimization is vast, since this problem be-
longs tomany communities.We here briefly survey use ofMinkowski
sums in various visual and geometric domains, as well as adjacent
approaches that may serve as alternatives.

Robotics and Motion Planning. In robotics, penetration depth is
commonly used to resolve or prevent collisions in a dynamical con-
text [Kim et al. 2002]. For instance, Minkowski differences are used
to detect interpenetration [Kockara et al. 2007], or suggest a di-
rection for contact resolution [Dobkin et al. 1993], but we did not
find work that directly differentiates penetration depth. Conversely,
recent work on differentiable collision detection/resolution does not

Fig. 10. Collage of diagram examples created by integrating our Minkowski-
based constraint enforcement with the Penrose system of [Ye et al. 2020].

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

8 • Minarčík, Estep, Ni, and Crane

input
mesh
(3D)

random initialization

additional constraints (avoid disk)larger target area injectivity in tight corners
other random initializations

minimize distortion + triangle-triangle Minkowski penalties globally injective
parameterization (2D)

Fig. 11. Minkowski penalties also hold potential for robust geometry processing. Here for instance we compute a globally injective flattening of the 3D mesh
(top left) into the 2D plane; since this mesh has two “crossing arms,” it must bend significantly. Top row: even with a random initialization, we obtain a map
with no self-intersection, confined to the given box. Bottom row: this behavior is consistent across random initializations, even with larger target areas, tight
corners, and nonconvex constraints.

use Minkowski-based penalties [Zimmermann et al. 2022], and is
limited to convex geometry [Tracy et al. 2023; Montaut et al. 2023].
Many Minkowski-based methods from robotics consider only sim-
ple shape parameterizations (e.g., rigid motions) due to the historical
difficulty of working with more complex configuration spaces [Gan-
jugunte 2007]. By thoughtful integration with automatic differen-
tiation (Section 4.1) and SDF evaluation (Section 3), our approach
enables the Minkowski approach to be applied to a more flexible
shape parameterizations, as needed in vector illustration (and, po-
tentially, areas like soft robotics).

Physical Simulation and Geometry Processing. Recent work from
computer graphics focuses on guaranteed global injectivity for tasks
ranging from surface parameterization to elastodynamic simula-
tion [Fang et al. 2021; Yu et al. 2021a; Fang et al. 2021]. Since the
objective is to find a non-intersecting state, most of these methods
consider only feasible initialization, often using domain-specific
knowledge [Smith and Schaefer 2015]. These methods also con-
sider only volumetric domains that have an inside/outside [Brid-
son et al. 2005]—using, e.g., the closest point “outside” an object to
drive collision resolution [Chen et al. 2023]. In contrast, we cannot
rely on problem-specific initialization strategies, since constraints
are often user-defined and hard to anticipate (Section 5.3.5). More-
over, we must handle rich constraints beyond no-overlap, and open
curves that do not have a well-defined inside/outside. Though some
strategies in this space address infeasible states, they are highly-
specialized to a certain problem domain such as injective map-
ping [Du et al. 2021; Garanzha et al. 2021] or mesh repair [Far-
gion and Weber 2022], and are not easily adapted to our problem.
Minkowski-based methods also appear in collision detection for
real-time graphics[Montaut et al. 2022]—with largely the same con-
siderations as in robotics.

Design and Illustration. Constraint-based design has a long his-
tory in computer graphics, dating back to Sutherland [1963]. Some
systems focus mainly on equality-type constraints, enforced via a

nonlinear solver [Nelson 1985]. Dynamic geometry packages such as
Cinderella [Richter-Gebert et al. 2012] or Geogebra [Hohenwarter
and Hohenwarter 2002] handle complex geometric relationships,
but in a fundamentally different way: using a parameterized model
where parameters can be adjusted bidirectionally [Kortenkamp
1999] (akin to forward/inverse kinematics). This approach is not
directly useful for inequality-type constraints (like containment or
overlap), but it could be quite interesting to integrate a kinematic
model with our energetic penalties. Some work uses repulsive po-
tentials to generate collision-free 2D graphics [Saputra et al. 2018;
Yu et al. 2021b], but considers only the no-overlap condition, and
requires feasible initialization. Li et al. [2020] and [Vicini et al. 2022]
differentiate vector graphics and SDFs, but do not formulate shape
layout penalties. Element-based texture synthesis [Ma et al. 2011]
yields impressive packing of small repetitive shapes, but relies on
fairly uniform sampling and shape size to achieve efficient over-
lap removal [Hsu et al. 2020]. Finally, Ye et al. [2020] proposed a
system (Penrose) for constraint-based layout of vector graphics,
using coarse approximations (e.g., bounding boxes) that do not take
precise geometry into account. As shown in Section 5.3.5, our ap-
proach can be used to enhance the capabilities of existing design
and illustration systems, such as Penrose.

Data Visualization and Cartography. In dataviz, the number of
primitives tends to be quite large (e.g., a whole social network);
graphical primitives are often reduced to, e.g., simple boxes for lay-
out [Sun et al. 2023], and existing work focuses more on reducing
clutter and improving readability [Gibson et al. 2013]. In contrast,
vector illustration demands high-quality placement of a small num-
ber of objects (10s–100s), attending carefully to their specific geome-
try. Some dataviz layout techniques use Minkowski differences—but
share limitations with methods from robotics, such as supporting
only no-overlap constraints; like methods from physical simulation
they also assume a well-defined inside/outside. For instance, Dwyer

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics • 9

[2009] uses the minimum penetration depth vector to adjust node-
link visualizations, but allows only convex polygons, and does not
consider differentiable optimization.

Cartography considers more fine-grained label placement [Imhof
1975]. Most methods for automatic label placement are algorith-
mic and gradient-free (e.g., simulated annealing) [Christensen et al.
1992; Bekos et al. 2019; Kern and Brewer 2008]. van Kreveld and
Schlechter [2005] use Minkowski sums for overlaps between label
boxes and island polygons, but also assume a definite inside/outside
and consider only no-overlap constraints.

7 LIMITATIONS AND FUTURE WORK
Limitations of our optimization scheme are detailed in Section 4.3.
As noted in Section 5.3, the biggest performance bottleneck is in “all-
pairs” examples, where our naïve 𝑂 (𝑛2) evaluation scheme could
easily be replacedwith an𝑂 (1) active set approach (e.g., using spatial
hashing). It might also be natural to adopt a coarse-to-fine strategy,
e.g., start with bounding boxes, and use polygonal approximation
only near the end of optimization. Piecewise differentiable penalties
could in principle cause problems for some numerical schemes—
though we have carefully chosen optimization and differentiation
strategies that work well here (Sections 4.2, 4.1). Complex constraint
sets yield large computational graphs, which can in turn cause slow
code generation—a challenge most directly addressed by further
work on autodiff systems (rather than our penalty formulation).
Moreover, as noted in Section 5.3.5, our method already provides us-
able interaction for real users on fairly complex diagrams (Figure 10).
In general we are optimistic that the efficiency, robustness, and flex-
ibility of our framework makes it a natural candidate for integration
into broader tools for diagramming and vector illustration.

Fig. 12. In general our method may of course get stuck in local minima,
due to a balance of forces between different penalties and objective terms.
Here for instance we obtain an infeasible state during an early stage of the
exterior point method (top center), though in this case, stiffening the penalty
kicks optimization into a feasible state (top right).

REFERENCES
Alon Baram. 2013. Polygonal Minkowski Sums Via Convolution: Theory and Practice.

University of Tel-Aviv.
Mathieu Bastian, Sebastien Heymann, and Mathieu Jacomy. 2009. Gephi: An Open

Source Software for Exploring and Manipulating Networks. Proceedings of the
International AAAI Conference on Web and Social Media 3, 1 (Mar. 2009), 361–362.
https://doi.org/10.1609/icwsm.v3i1.13937

side length: 4.6756 side length: 4.75

1

best known packing [Bidwell 1997] Minkowski penalties (ours)

Fig. 13. Although we make no guarantees about global optimality, our
Minkowski scheme generally finds excellent layouts—even for problems it
was not specifically designed to handle. Here we achieve a similar solution
to the best known packing of 17 unit squares into the smallest possible box
[Friedman 2012].

Evan Behar and Jyh-Ming Lien. 2011. Fast and robust 2D Minkowski sum using reduced
convolution. In 2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 1573–1578. https://doi.org/10.1109/IROS.2011.6094482

Michael A. Bekos, Benjamin Niedermann, and Martin Nöllenburg. 2019. External
Labeling Techniques: A Taxonomy and Survey. Comput. Graph. Forum 38, 3 (jun
2019), 833–860.

Robert Bridson, Sebastian Marino, and Ronald Fedkiw. 2005. Simulation of clothing
with folds and wrinkles. In ACM SIGGRAPH 2005 Courses. 3–es.

Edwin Catmull and Raphael Rom. 1974. A class of local interpolating splines. In
Computer Aided Geometric Design. Academic Press, 317–326. https://doi.org/10.
1016/B978-0-12-079050-0.50020-5

He Chen, Elie Diaz, and Cem Yuksel. 2023. Shortest Path to Boundary for Self-
Intersecting Meshes. arXiv preprint arXiv:2305.09778 (2023).

Jon Christensen, Joe Marks, and Stuart Merrill Shieber. 1992. Labeling point features
on maps and diagrams. (1992).

Blake Courter. 2023. Unit Gradient Fields: SDFs, UGFs, and Their Friends. https://www.
blakecourter.com/2023/05/18/field-notation.html

Keenan Crane, Fernando De Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital
geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013
Courses. 1–126.

Keenan Crane and Max Wardetzky. 2017. A glimpse into discrete differential geometry.
Notices of the American Mathematical Society 64, 10 (2017).

Qiaodong Cui, Victor Rong, Desai Chen, and Wojciech Matusik. 2023. Dense,
Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects. ACM Trans.
Graph 42, 4 (2023).

DavidDobkin, JohnHershberger, David Kirkpatrick, and Subhash Suri. 1993. Computing
the intersection-depth of polyhedra. Algorithmica 9, 6 (1993), 518–533.

Xingyi Du, Danny M Kaufman, Qingnan Zhou, Shahar Z Kovalsky, Yajie Yan, Noam
Aigerman, and Tao Ju. 2021. Optimizing global injectivity for constrained parame-
terization. ACM Trans. Graph. 40, 6 (2021), 260–1.

Tim Dwyer. 2009. Scalable, Versatile and Simple Constrained Graph Layout. Comput.
Graph. Forum 28, 3 (jun 2009), 991–998.

Sam Estep, Raven Rothkopf, Wode Ni, and Joshua Sunshine. 2024. Rose: Efficient and
Extensible Autodiff on the Web. arXiv:2402.17743 [cs.PL]

Yu Fang, Minchen Li, Chenfanfu Jiang, and Danny M Kaufman. 2021. Guaranteed
globally injective 3D deformation processing. ACM Transactions on Graphics 40, 4
(2021).

Guy Fargion andOfirWeber. 2022. Globally Injective Flattening via a ReducedHarmonic
Subspace. ACM Transactions on Graphics (TOG) 41, 6 (2022), 1–17.

Erich Friedman. 2012. Packing unit squares in squares: A survey and new results. The
Electronic Journal of Combinatorics (2012), DS7–Aug.

Shashidhara K Ganjugunte. 2007. A Survey on Techniques for Computing Penetration
Depth. (2007).

Vladimir Garanzha, Igor Kaporin, Liudmila Kudryavtseva, François Protais, Nicolas Ray,
and Dmitry Sokolov. 2021. Foldover-free maps in 50 lines of code. ACM Transactions
on Graphics (TOG) 40, 4 (2021), 1–16.

Helen Gibson, Joe Faith, and Paul Vickers. 2013. A survey of two-dimensional graph
layout techniques for information visualisation. Inf. Vis. 12, 3-4 (jul 2013), 324–357.

Leonidas Guibas and Raimund Seidel. 1986. Computing convolutions by reciprocal
search. In Proceedings of the second annual symposium on Computational geometry.
90–99.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

10 • Minarčík, Estep, Ni, and Crane

Hwei-Shin Harriman. 2021. Edgeworth: authoring diagrammatic math problems using
programmutation. In Companion Proceedings of the 2021 ACM SIGPLAN International
Conference on Systems, Programming, Languages, and Applications: Software for
Humanity. 22–24.

Stefan Hertel and Kurt Mehlhorn. 1983. Fast triangulation of simple polygons. In Foun-
dations of Computation Theory, Marek Karpinski (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 207–218.

Markus Hohenwarter and Markus Hohenwarter. 2002. GeoGebra. Available on-line at
http://www. geogebra. org/cms/en (2002).

Chen-Yuan Hsu, Li-Yi Wei, Lihua You, and Jian Jun Zhang. 2020. Autocomplete element
fields. In Proceedings of the 2020 CHI Conference on Human Factors in Computing
Systems. 1–13.

Nathan Hurst, Wilmot Li, and Kim Marriott. 2009. Review of automatic document
formatting. In Proceedings of the 9th ACM symposium on Document engineering.
99–108.

Eduard Imhof. 1975. Positioning names on maps. Am. Cartogr. 2, 2 (jan 1975), 128–144.
Mike Innes, Alan Edelman, Keno Fischer, Chris Rackauckas, Elliot Saba, Viral B Shah,

and Will Tebbutt. 2019. A Differentiable Programming System to Bridge Machine
Learning and Scientific Computing. arXiv:1907.07587 [cs.PL]

Alec Jacobson. 2021. personal communication.
Rijul Jain, Wode Ni, and Joshua Sunshine. 2023. Generating Domain-Specific Programs

for Diagram Authoring with Large Language Models. In Companion Proceedings
of the 2023 ACM SIGPLAN International Conference on Systems, Programming, Lan-
guages, and Applications: Software for Humanity. 70–71.

Wenzel Jakob, Sébastien Speierer, Nicolas Roussel, and Delio Vicini. 2022. Dr. jit: A
just-in-time compiler for differentiable rendering. ACM Transactions on Graphics
(TOG) 41, 4 (2022), 1–19.

Paul A Jensen and Jonathan F Bard. 2002. Operations research models and methods. John
Wiley & Sons.

Jill Phelps Kern and Cynthia A. Brewer. 2008. Automation and the map label placement
problem: A comparison of two GIS implementations of label placement. Cartogr.
Perspect. 60 (2008), 22–45.

Young J Kim, Miguel A Otaduy, Ming C Lin, and DineshManocha. 2002. Fast penetration
depth computation for physically-based animation. In Proceedings of the 2002 ACM
SIGGRAPH/Eurographics symposium on Computer animation. 23–31.

Sinan Kockara, Tansel Halic, Kamran Iqbal, Coskun Bayrak, and Richard Rowe. 2007.
Collision detection: A survey. In 2007 IEEE International Conference on Systems, Man
and Cybernetics. IEEE, 4046–4051.

Yehuda Koren. 2003. On spectral graph drawing. In International Computing and
Combinatorics Conference. Springer, 496–508.

Ulrich H Kortenkamp. 1999. Foundations of dynamic geometry. Ph. D. Dissertation. ETH
Zurich.

In-Kwon Lee, Myung-Soo Kim, and Gershon Elber. 1998. Polynomial/rational approxi-
mation of Minkowski sum boundary curves. Graphical Models and Image Processing
60, 2 (1998), 136–165.

Wonyeol Lee, Hangyeol Yu, Xavier Rival, and Hongseok Yang. 2020. On correctness
of automatic differentiation for non-differentiable functions. Advances in Neural
Information Processing Systems 33 (2020), 6719–6730.

Raphael Linus Levien. 2009. From spiral to spline: Optimal techniques in interactive curve
design. University of California, Berkeley.

Adrian Lewis and Michael L. Overton. 2009. Nonsmooth Optimization via BFGS. SIAM
Journal on Optimization, 1–35.

Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan Ragan-Kelley. 2020. Differen-
tiable Vector Graphics Rasterization for Editing and Learning. ACM Trans. Graph.
(Proc. SIGGRAPH Asia) 39, 6 (2020), 193:1–193:15.

Yajuan Li, Meng Zhang, Wenbiao Jin, and Chongyang Deng. 2023. Approximating
Bézier curves with least square polygons. The Visual Computer (2023), 1–10.

Dong C Liu and Jorge Nocedal. 1989. On the limited memory BFGS method for large
scale optimization. Mathematical programming 45, 1 (1989), 503–528.

Corie Lok. 2011. Biomedical illustration: From monsters to molecules. Nature 477, 7364
(2011), 359–361.

David G Luenberger, Yinyu Ye, et al. 1984. Linear and nonlinear programming. Vol. 2.
Springer.

Chongyang Ma, Li-Yi Wei, and Xin Tong. 2011. Discrete element textures. ACM
Transactions on Graphics (TOG) 30, 4 (2011), 1–10.

Avraham Margalit and Gary D Knott. 1989. An algorithm for computing the union,
intersection or difference of two polygons. Computers & Graphics 13, 2 (1989),
167–183.

ZoëMarschner, Silvia Sellán, Hsueh-Ti Derek Liu, and Alec Jacobson. 2023. Constructive
Solid Geometry on Neural Signed Distance Fields. In SIGGRAPHAsia 2023 Conference
Papers (SA ’23). Association for Computing Machinery, New York, NY, USA, Article
121, 12 pages. https://doi.org/10.1145/3610548.3618170

Louis Montaut, Quentin Le Lidec, Antoine Bambade, Vladimir Petrik, Josef Sivic, and
Justin Carpentier. 2023. Differentiable collision detection: a randomized smoothing
approach. In 2023 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 3240–3246.

Louis Montaut, Quentin Le Lidec, Vladimir Petrik, Josef Sivic, and Justin Carpentier.
2022. Collision Detection Accelerated: An Optimization Perspective. In Robotics:
Science and Systems.

William Moses and Valentin Churavy. 2020. Instead of Rewriting Foreign Code for
Machine Learning, Automatically Synthesize Fast Gradients. In Advances in Neural
Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 12472–12485. https://proceedings.
neurips.cc/paper/2020/file/9332c513ef44b682e9347822c2e457ac-Paper.pdf

Greg Nelson. 1985. Juno, a constraint-based graphics system. In Proceedings of the 12th
annual conference on Computer Graphics and Interactive Techniques. 235–243.

Stanley Osher, Ronald Fedkiw, and K Piechor. 2004. Level set methods and dynamic
implicit surfaces. Appl. Mech. Rev. 57, 3 (2004), B15–B15.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library.
In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,
Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-
high-performance-deep-learning-library.pdf

Inigo Quilez. 2020. The SDF of a Line Segment. YouTube. https://www.youtube.com/
watch?v=PMltMdi1Wzg

I. Quilez. 2021. 2D distance functions. https://iquilezles.org/www/articles/
distfunctions2d/distfunctions2d.htm

Hamid Rezatofighi, Nathan Tsoi, JunYoung Gwak, Amir Sadeghian, Ian Reid, and Silvio
Savarese. 2019. Generalized Intersection Over Union: A Metric and a Loss for
Bounding Box Regression. In 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). 658–666. https://doi.org/10.1109/CVPR.2019.00075

Jürgen Richter-Gebert, Ulrich H Kortenkamp, Jürgen Richter-Gebert, and Ulrich H
Kortenkamp. 2012. Interactive Geometry with Cinderella. The Cinderella. 2 Manual:
Working with The Interactive Geometry Software (2012), 67–152.

Leonardo Sacht, Etienne Vouga, and Alec Jacobson. 2015. Nested cages. ACM Transac-
tions on Graphics (TOG) 34, 6 (2015), 1–14.

Reza Adhitya Saputra, Craig S Kaplan, and Paul Asente. 2018. RepulsionPak:
Deformation-driven element packing with repulsion forces. In Proceedings of the
44th Graphics Interface Conference. 10–17.

Yury Semenov. 2020. Minkowski sum of convex polygons - Algorithms for Competitive
Programming. https://cp-algorithms.com/geometry/minkowski.html

Jason Smith and Scott Schaefer. 2015. Bijective parameterization with free boundaries.
ACM Transactions on Graphics (TOG) 34, 4 (2015), 1–9.

Bert Speelpenning. 1980. Compiling fast partial derivatives of functions given by algo-
rithms. University of Illinois at Urbana-Champaign.

Lavanya Subramaniam. 2003. Partition of a Non-Simple Polygon into Simple Polygons.
Master’s thesis. University of South Alabama, Mobile, Alabama.

Guodao Sun, Zihao Zhu, Gefei Zhang, Chaoqing Xu, YunchaoWang, Sujia Zhu, Baofeng
Chang, and Ronghua Liang. 2023. Application of Mathematical Optimization in
Data Visualization and Visual Analytics: A Survey. IEEE Trans. Big Data 9, 4 (aug
2023), 1018–1037.

Ivan E Sutherland. 1963. Sketchpad: A man-machine graphical communication system.
In Proceedings of the May 21-23, 1963, spring joint computer conference. 329–346.

Roberto Tamassia. 2013. Handbook of graph drawing and visualization. CRC press.
Matthias Teschner, Bruno Heidelberger, Matthias Müller, Danat Pomerantes, and

Markus H Gross. 2003. Optimized spatial hashing for collision detection of de-
formable objects.. In Vmv, Vol. 3. 47–54.

Kevin Tracy, Taylor A Howell, and Zachary Manchester. 2023. Differentiable collision
detection for a set of convex primitives. In 2023 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 3663–3670.

Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing Data using t-
SNE. Journal of Machine Learning Research 9 (2008), 2579–2605. https://api.
semanticscholar.org/CorpusID:5855042

Marc van Kreveld and Tim Schlechter. 2005. Automated label placement for groups of
islands. In Proc. of the 22nd International Cartographic Conference.

Delio Vicini, Sébastien Speierer, and Wenzel Jakob. 2022. Differentiable Signed Distance
Function Rendering. Transactions on Graphics (Proceedings of SIGGRAPH) 41, 4 (July
2022), 125:1–125:18. https://doi.org/10.1145/3528223.3530139

Frank Wagner, Alexander Wolff, Vikas Kapoor, and Tycho Strijk. 2001. Three rules
suffice for good label placement. Algorithmica 30 (2001), 334–349.

Ron Wein, Alon Baram, Efi Fogel, Eyal Flato, Michael Hemmer, and Sebastian Morr.
2023. CGAL 5.6 - 2D Minkowski Sums: User Manual. https://doc.cgal.org/5.6/
Minkowski_sum_2/index.html

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of
neural implicit surfaces. In Thirty-Fifth Conference on Neural Information Processing
Systems.

Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard
Szeliski, Jonathan T. Barron, and Ben Mildenhall. 2023. BakedSDF: Meshing Neural

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

Minkowski Penalties: Robust Differentiable Constraint Enforcement for Vector Graphics • 11

initial
state

Minkowski
penalties (ours)

interval
overlap

intersection
over union

repulsive cornerspyramid volume SDF at corners

overlap

no overlap

Fig. 16. Even for the simple case of rectangles, most ad-hoc schemes cannot
eliminate overlap. The lone exception is pyramid overlap, which (unlike our
Minkowski penalties) does not generalize to shapes beyond rectangles.

Fig. 14. Results for alternative geometric queries for the layout of letters
interacting with the large “S”. The individual glyphs can be tangent to the
“S” shape (left) or its complement (center) while remaining disjoint with
each other. The padding of both tangent and disjoint queries can also be
set to nonzero values (right).

Fig. 15. Starting from different random seeds provides many design alterna-
tives for a given set of constraints/objectives. Here we show the result of 30
different random initializations for the example described in Section 5.3.1.

SDFs for Real-Time View Synthesis. arXiv (2023).
Katherine Ye, Wode Ni, Max Krieger, Dor Ma’ayan, Jenna Wise, Jonathan Aldrich,

Jonathan Sunshine, and Keenan Crane. 2020. Penrose: From Mathematical Notation
to Beautiful Diagrams. ACM Trans. Graph. 39, 4 (2020).

Chris Yu, Caleb Brakensiek, Henrik Schumacher, and Keenan Crane. 2021a. Repulsive
Surfaces. ACM Trans. Graph. 40, 6 (2021).

Chris Yu, Henrik Schumacher, and Keenan Crane. 2021b. Repulsive curves. ACM
Transactions on Graphics (TOG) 40, 2 (2021), 1–21.

Simon Zimmermann, Matthias Busenhart, Simon Huber, Roi Poranne, and Stelian Coros.
2022. Differentiable collision avoidance using collision primitives. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). IEEE, 8086–8093.

SIGGRAPH Conference Papers ’24, July 27-August 1, 2024, Denver, CO, USA.

