Active Neural Localization in Noisy Environments

Cong Li!

Abstract— Localization, the problem of estimating the loca-
tion of the robot given a map and a sequence of observations,
is a fundamental problems in mobile robotics. Most traditional
localization methods are passive, i.e. the robot does not have
the ability to adjust its action based on its observations. The
recently proposed active neural localization algorighm combines
deep neural networks with Bayes filter to perform efficient
active localization. In this project, we seek to extend active
neural localization in noisy environments, where Gaussian
noises are added to both the position and the observation
of the agent. A series of experiments show that our active
localization method outperforms passive localization methods
in both noiseless and noisy environments.

I. INTRODUCTION

Localization, which is the problem of estimating the
location of the robot from an observation and a map of
environment, has received the greatest attention in the past
decade. Traditional methodologies, such as Kalman filter
[1], updates the agent’s location and the map based on
a passive stream of observations, which, Chaplot et al.[2]
argue, is sub-optimal in the number of steps required to
localize the robot and recover the map, as the actions taken
by the agent are rather random and arbitrary. To solve this
problem, Chaplot et al. proposed a fully differentiable neural
network that grants the agent the ability to optimally localize
itself given the environment map. Different from traditional
localization methods, the model is based on the Bayesian
filter containing the perceptual model and a policy model,
has the ability to predict the action taken in the future. In this
way, the robot can learn to navigate quickly to unambiguous
locations. However, the problem that they solved, is based
on one strong prior that the perception and motion models
are noise-free, which is not suitable for real-life situations.
In this project, we seek to extend their work to Active Neural
Localization in noisy environments, with the agent capable
of adjust the perception based on previous conditions.

The contribution of our project is to extend the scope of ac-
tive neural localization, introducing noise into the perceptual
model and applying technique such as probabilistic graphical
model to address the noise and increase the robustness of the
proposed model.

II. RELATED WORK

Localization has been an active field of research since
more than two decades. There are many efficient passive
localization methods. Smith et al.[3] proposed the stochastic
map which always contains the best estimates of relation-
ships among objects in the map, and their uncertainties. The

{congll, gyan, wyuanl}@andrew.cmu.edu

Geng Yan!

Wentao Yuan!

Kalman filter is used for localization. Nister et al. [4] used
geometry-based vision methods for estimating the motion
of the robot. Recently, some learning-based localization
methods such as DeepVO [5] and VINet [6] are proposed
showing the effectiveness of deep learning for localization
problems. However, these localization methods are passive
because they don’t have the ability to predict the action of
the robot taken in the future. The ability to predict the action
could eliminate the ambiguity to localize more quickly and
more accurately.

Recent work has also made progress by incorporating
reinforcement learning based policy model with traditional
localization methods. Zhang et al. [7] presented an approach
to provide deep reinforcement learning agents with long-
term memory to learn representations of a global map from
sensor data. They formulated the exploration task as a
Markov decision process in which the agent interacts with
the environment through a sequence of observations, actions
and rewards. They embed procedures including localization
prediction, motion prediction, data association, measurement
mapping and mapping, mimicking that of traditional SLAM
into the soft-attention based addressing to bias the write/read
operations towards SLAM-like behaviors. Chaplot et al.[2]
proposed “Active Neural Localizer”, which uses structured
components for Bayes filter-like belief propagation and
learns a policy based on the belief to localize accurately
while minimizing the number of steps for localization. They
use grid-based representation of belief, which is popular
among localization methods. The proposed model has two
main components: the perceptual model and the policy
model. For the perceptual model, it firstly outputs the feature
representation from the agent’s observation and the states
given in the map information. A trainable deep convolutional
network is used to get the feature representation for 3D
environment. Then, Cosine similarity is utilized to update the
likelihood of each state in the map information. The policy
model, which is trained using Asynchronous Advantage
Actor-Critic (A3C), gives the probability of the next action
given the current belief of the agent. The experimental results
show the proposed model outperforms the baseline models
while being order of magnitudes faster for various 2D and
3D environments including a realistic map in the unreal
environment. However, their implementation is based on one
strong prior that the perception and motion models are noise-
free, which is not suitable for real-life situations. In this
project, we extend their work for noisy environments.

Poli
Perceptual Sampl
Model amplea;_,
! U
Bel(y:)
Policy
O BEI(yt} - n(atIBEI(yt))
) tual .
e;::gela le(St} Sample a,

Fig. 1.

III. METHODOLODY
A. Active Neural Localization

We build our model on top of the model proposed by
[2]. The model is based on Markov Localization [8], a
probabilistic approach using Bayesian filtering whose belief
can be recursively computed using following equations:

Bel(y) = Y p(lye-1,ai-1) Bel(ye—1) (1)

Yt—1

1 _
Bel(y:) = Elik (st) Bel (y) 2)

where y, is random variable denoting location of the agent
at time ¢, agent’s observation at time ¢ is represented as s,
a; denotes the action taken by the agent at time ¢, Bel (y;)
and Bel(y;) are the belief of the location of the robot at time
t before and after current observation, respectively, Lik(s;)
is the probability of observing s; and Z is the normalization
constant. The model has two novel components: the percep-
tual model and the policy model. The overall architecture is
shown in Figure 1. The goals for active localization are both
estimating Bel(y;) to obtain the probability distribution of
yzand learning the policy model.

For the 2D environment, the map size is denoted as M x
N, belief is expressed as the 3-dimensional matrix as an
O x M x N tensor denoting the probability of being at a
particular position, O is the number of possible orientations
of the robot which is defined as 4 (North, East, South, West)
in this project. Furthermore, we also estimate the likelihood
map and Lik(s;) = p(st|y:) is the probability of observing
s; conditioned the location of the robot.

In perceptual model, the feature representation from the
agent’s observation and the states given in the map infor-
mation are computed. In the 2D environment, we compute
a one-hot vector of the same dimension as the observation
to represent the depth which is used as the feature repre-
sentation directly. In order to improve the computational
efficiency, we pre-calculated the feature representation from
the agent’s observation for each location of the 2D map. The

The Active Neural Localization framework [2]

perceptual model takes the observation s;, the map M and
belief of the agent’s location at time ¢ before observing s; as
input and produces the likelihood of the observation Lik(s;),
which is then used to update the agent’s belief as following:

Belly) = 5 Lik (s:) © Bel () @)

The policy model is a neural network which takes the
agent’s current belief of its pose Bel(y;) and the map design
M as input and produces a distribution of possible actions to
take in the next step in order to localize as fast as possible.
The model starts with two convolutional layers, each with
16 filters of size 3x and stride of 1. Then, the feature
vector is concatenated with the embeddings of the previous
5 actions and the current step and feed to two streams of
fully-connected layers — one predicts the probability of each
action and the other predicts the value of the current state. For
more information about this two-stream architecture, please
refer to [9]. The embeddings are computed by mapping the
one-hot representation of the action/step into a 8-dimensional
space via a learned linear transformation. We find this is
crucial to avoid the situation where the agent is stuck in
keeping turning around at the same location.

B. Bayes Filter for Noisy Environments

The Bayes filter model in [2] did not take any noise in the
odometry and the observation into account. In order to deal
with the noisy environments that we designed, we introduces
a Bayes filter model that considers both the odometry and
observation noise.

It is challenging to introduce noise into the model pro-
posed by [2], because it is designed for a discrete environ-
ment, while most of existing filtering algorithms assume a
continuous environment. For simplicity, we decide to use a
discrete approximation of the Gaussian noise.

For the odometry noise, we assume a 1D Gaussian with
mean and sigma 0.4 as the noise distribution. In other words,
after receiving the command of moving forward 1 unit, the
agent will move 1 unit (noise= 0) with possibility of 0.7884,
move 2 units (noise= 1) with possibility of 0.1058, or stay

(@ 7x7 (b) 15 x 15

Fig. 2.

still (noise= —1) with possibility of 0.1058. We modify
the belief propagation to incorporate this noise. Previously,
the propagation of belief from Bel(y; 1) to Bel(y;) is
determinant. Now the agent can move to 3 different possible
locations, so we calculate the updated belief map using
all three possibilities and use the weighted average as the
final belief map Bel(y;) for the next step. Note that we
only consider noise in forward motion. This is because
incorporating rotational noise requires a totally different
design for the belief maps. We decide to leave that for future
work.

For the observation noise, we assume the same noise
distribution of a 1D Gaussian with mean 0 and sigma 0.4.
This means that if the actual observation is s; at step t,
the observation that the agent receives can be §; = s; with
probability of 0.7882, 5; = s;+1 with probability of 0.1058,
or 5; = s; — 1 with probability of 0.1058. To address this
noise, we calculate the separate likelihood maps for all three
possible observations based on the input observation s, then
use the weighted average with possibilities as weights as the
final likelihood map.

IV. EXPERIMENTS
A. Environment

We trained and tested our models on a 2D simulation
environment of random mazes, similar to the one in [2].
In this environment, the map is a 2D maze represented
as a M x N occupancy grid, as shown in Figure 2. The
maze design is generated by a random depth first search
algorithm that creates n islands of walls of length p in an
enclosed area while keeping the free space connected. The
parameters n and p controls the density and complexity of the
maze, respectively. For more details about maze generation
algorithms, please refer to [10]. We generated random mazes

(c) 21 x 21

2D Maze Environment

of three different sizes to test our algorithm (see Figure 2 for
example maze designs).

The localization problem is represented as a Markov
Decision Process M = (S, A,R,T,~), where S, A, R,T
and v are the state space, action space, reward function,
transition function and discount factor. Here, the agent’s state
s € S consists of its location and orientation. The location
is discretized into positions on the M x N grid and the
orientation is discretized into 4 directions — North, East,
South and West, but we will relax this assumption later.
At the beginning of each episode, the agent is placed in a
random free grid with random orientation. At each step, the
agent takes an action a and receives a reward r = R(s,a).
Its state is then changed based on the transition function to
s’ = T(s,a). The episode ends when a maximum number
of steps is reached.

In the environment, three actions are available to the agent:
moving forward, turning left 90 degrees and turning right 90
degrees. The transition function changes the agent’s position
and orientation accordingly. If the agent’s action is moving
forward but a wall is in front, it stays at the last location.
In our case, the state is not directly visible to the agent
(otherwise there will be no point doing localization). Instead,
the agent receives some observation o based on its state s.
In the 2D maze, o is simply the number of free space in
front of the agent. We can think of the agent as having a
single-beam range sensor.

We designed three versions of the environment which
increasingly approximate the real world scenario. In the
Maze-v1 environment, the transition function is deterministic
and there is no noise in the observation. This means the
agent has perfect motion and sensor model, which allows
us to focus on testing the correctness of the policy model.
In the Maze-v2 environment, the agent’s motion and obser-
vation are corrupted by a noise o whose distribution is a

Env Maze-v1
Map Size 7x7 15x15 21x21
Episode Length 15 30 20 40 30 60
Passive Time 2.89 7.55 26.55 2650 62.85 71.07
Localization Acc 0239 0.357 0401 0.609 0490 0.717
Active Neural Time 1498 2624 41.79 59.73 8840 118.78
Localization Acc 0.699 0.817 0949 0.980 0.729 0.987
TABLE I
RESULTS ON DETERMINISTIC ENVIRONMENTS
Env Maze-v2
Map Size X7 15x15 21x21
Episode Length 15 30 20 40 30 60
Passive Time 6.97 1221 4842 79.65 158.66 258.11
Localization Acc 0212 0.326 0.376 0.549 0.443 0.641
Active Neural Time 29.50 54.83 131.72 143.69 24021 43843
Localization Acc 0.512 0.624 0.695 0.842 0.546 0.847
TABLE II
RESULTS ON DISCRETE STOCHASTIC MOVEMENTS
Env Maze-v3
Map Size X7 15x15 21x21
Episode Length 15 30 20 40 30 60
Passive Time 6.35 11.09 5092 78.19 137.99 221.89
Localization Acc 0.154 0.209 0311 0.446 0.409 0.576
Active Neural Time 17.21 3377 74.19 11899 158.14 346.04
Localization Acc 0.308 0.401 0.347 0.578 0.396 0.587
TABLE III

RESULTS ON CONTINUOUS STOCHASTIC MOVEMENTS

discrete approximation to a Gaussian. Specifically, we have
ple = —1) = 0.10558, p(e = 0) = 0.7884 and p(e =
1) 0.10558. In the Maze-v3 environment, the agent’s
location is no longer discrete but a tuple of real numbers
(z,y). When the agent moves forward, we add a continuous
Gaussian noise ¢ ~ N(0,0.4). When the observation is
calculated, we discretize the agent’s location again in order
to perform ray casting. No rotational noise is added because
that involves significant changes to the ray casting procedure
and likelihood calculation.

For Maze-v2 and Maze-v3 environments, the belief propa-
gation is changed according to the noise. Specifically, when
the agent moves forward, instead of shifting the previous
belief directly, we linearly interpolate the previous belief
and the shifted belief so that the motion noise is taken
into account. The main point here is to test the robustness
of the policy model to motion noise, so we did not use
a complicated filtering scheme. However, this sometimes
leads to the situation where the agent’s belief becomes all 0,
especially in Maze-v3 where the drift accumulates. In that
case, we reinitialize the belief to be uniform over the map

so that the agent can relocalize based on new observations.

For all the environments, the agent receives a reward of
1 if it successfully localizes and O otherwise. A successful
localization means that at the end of episode, the probability
of the agent’s actual pose in its belief matrix is greater
than 0.5. In other words, the pose that the agent is most
certain about needs to be its actual pose and its probability
needs to be greater than 0.5. To speed up training, we also
use the negative entropy of the agent’s belief matrix as an
intermediate reward at each step.

B. Results

We compared the performance of a passive localization
algorithm with our implementation of active neural localiza-
tion. In the passive localization algorithm, only the policy
model is replaced by random action and everything else
including the Bayes filter remains the same. The results are
shown in Table I, II and III.

The policy model in the active neural localization algo-
rithm is trained using advantage actor-critic (A2C) [11] for
200,000 episodes. During training, every 500 episodes we

evaluate the model’s localization accuracy on 100 mazes.
The training curves are shown in Figure 5.

We ran both agent for 1000 episodes on mazes of three
different sizes 7 x 7, 15 x 15 and 21 x 21. The random seed
used to generate the test mazes are fixed so that the agent is
always tested on the same set of mazes. The accuracy (Acc)
entry in the tables measures the percentage of successful
localization (see definition in the previous subsection) out
of 1000 test episodes. Since each episode is of a fixed
length, the accuracy is closely correlated with the agent’s
ability to efficiently localize itself within a limited number
of steps. The time entry in the tables measures the time
it takes to run the algorithm for 1000 episodes. Note that
this does not reflect the efficiency of localization, because
in the simulation environment the agent’s motion is instant.
This entry is there to illustrate the computation overhead that
the policy model imposes. In practice, the localization time
mainly depends on the number of steps the agent takes to
correctly localize.

We note that our maze environment is very challenging for
localization, since the agent’s observation is limited to only
one direction and there are lots of similar structures. Never-
theless, from the tables we can see that our implementation
of the active neural localization is able to achieve fairly high
localization accuracy within a small number of steps and
outperform the passive localization in nearly all cases. This
shows that the ability to take conscious actions significantly
improves localization efficiency. An example that further
illustrates this is shown in Figure 3 and 4. In this example,
we can see that the policy that the active agent learned tells
it to avoid behaviors that will not help the localization, such
as bumping into walls, so it turns left at step 1 (Figure
3(a), 3(b)) while the passive agent moves straight into a
wall (Figure 4(a), 4(b)). Moreover, the active agent learns
behaviors that can help it localize faster, e.g. turning at
intersections. At step 8 when it encounters an intersection,
it turns left and immediately localizes it self to one possible
pose (Figure 3(c), 3(d)). A passive agent, however, goes
straight when it encounters the same intersection and is not
able to reduce the ambiguity in its belief (Figure 4(c), 4(d)).

Another notable thing for the noisy environments (Maze-
v2 and Maze-v3) is that the policy model is not retrained.
Only the Bayes filtering is modified to incorporate noise in
the motion and sensor model. This shows the policy model’s
robustness to noise and ability to generalize. It means that
we can train the policy model in simulation environments
which may have very different noise characteristics from
real environments, but an agent can still use it to improve
localization efficiency in real environments.

V. CONCLUSION AND DISCUSSION

In this project, we implemented the active neural local-
ization framework. Moreover, we designed more realistic
simulation environments with motion and observation noise
and extended the original model to incorporate these noises.
We first built a simple noisy environment by corrupting the
agent’s motion and observation by a discrete approximation

to a Gaussian noise. Then, we built another environment us-
ing a continuous pose representation which allows us to add a
continuous Gaussian noise for the motion model. A series of
comparative experiments show that our our implementation
of active neural localization is more efficient to accurately
localize than a passive localization algorithm. This shows
the advantages of combining localization and planning in a
single end-to-end framework. In the future, this work can be
extended to 3D simulation and real environment and even a
full SLAM system by incorporating graph optimization and
external memory.

REFERENCES

[11 R. E. Kalman, “A new approach to linear filtering and prediction
problems,” Journal of basic Engineering, vol. 82, no. 1, pp. 35-45,
1960.

[2] D. S. Chaplot, E. Parisotto, and R. Salakhutdinov, “Active neural
localization,” arXiv preprint arXiv:1801.08214, 2018.

[3] R. Smith, S. Matthew, and C. Peter, “Estimating uncertain spatial
relationships in robotics,” Autonomous robot vehicles, 1990.

[4] D. Nistr, N. Oleg, and B. James, “Visual odometry for ground vehicle
applications,” Journal of Field Robotics, 2006.

[5] S. Wang, C. Ronald, W. Hongkai, and N. Trigon, “Deepvo: Towards
end-to-end visual odometry with deep recurrent convolutional neural
networks,” Robotics and Automation (ICRA), 2017 IEEE International
Conference on, 2017.

[6] R.Clark, W. Sen, W. Hongkai, M. Andrew, and T. Niki, “Vinet: Visual-
inertial odometry as a sequence-to-sequence learning problem,” AAAI,
2017.

[71 Z. Jingwei, T. Lei, B. Joschka, B. Wolfram, and L. Ming, “Neural
slam: Learning to explore with external memory,” arXiv preprint
arXiv:1706.09520, 2017.

[8] F. Dieter, “Markov localization-a probabilistic framework for mobile
robot localization and navigation,” phD thesis, Universitat Bonn, 1998.

[9] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas, “Dueling network architectures for deep reinforcement
learning,” arXiv preprint arXiv:1511.06581, 2015.

[10] Wikipedia contributors, “Maze generation algorithm — Wikipedia, the
free encyclopedia,” 2018. [Online; accessed 4-May-2018].

[11] R.S. Sutton and A. G. Barto, Reinforcement learning: An introduction,
vol. 1. MIT press Cambridge, 1998.

North East South West

(a) Step 0

North East South West

(b) Step 1

North East South West

(c) Step 8

North East South West

(d) Step 9

Fig. 3. An active agent localizing itself, with the agent’s belief matrix on the left and the agent’s ground truth pose on the right.

North East South West

(a) Step 0

North East South West

(b) Step 1

North East South West

(c) Step 10

North East South West

(d) Step 11

Fig. 4. A passive agent localizing itself, with the agent’s belief matrix on the left and the agent’s ground truth pose on the right.

success rate

success rate

success rate

0.6

0.5

0.4

0 50k 100k
episodes

(a) Size 7, Max step 15

0 50k 100k
episodes

(c) Size 15, Max step 20

a 50k 100k
episodes

(e) Size 21, Max step 30

150k

150k

150k

Fig. 5.

0.9

0.8

0.7

0.6

success rate

0.5

0.4

0.3

200k

0.9

0.8

0.7

success rate

0.6

0.5

200k

0.6

0.4

success rate

0.2

o

o

/P" " vV VWYY W YW
50k 100k 150k 200k

episodes

(b) Size 7, Max step 30

50k 100k 150k 200k
episodes

(d) Size 15, Max step 40

200k

a 50k 100k 150k 200k

episodes

(f) Size 21, Max step 60

Localization accuracy during training

